Cita de: fzp en 30 Noviembre 2021, 23:24 PM
Hay dos posibles respuestas, según se considere que la pregunta que se está haciendo (como ya dije anteriormente yo me imaginé que era una pregunta pero, al parecer era otra). Así que hay dos casos.
1) ¿La pregunta se refiere a que cómo se demuestra que la suma de los "n" primeros números naturales (1 + 2+ 3 +...+ n) es = a n(n+1)/2?
Si la pregunta es ésa a mi no se me ocurre ningún método o enfoque distinto de los que ya se han citado. O sea que no se me ocurre otra forma de demostrarlo. Ya Serapis indicó en su primer enlace que, en realidad, es sólo un caso particular de la demostración -mucho más general- de la suma de términos de una progresión aritmética; con la circunstacia de que la progresión sea la de los propios números naturales, y que el primer término sea el 1 y el último, n.
Eso está deducido hace mucho tiempo y por cierto, no fue Gaus quién la descubrió. Gauss -al parecer, es una anécdota- lo que hizo intuitívamente, a los 9 años de edad en clase de matemáticas fue el razonamiento de que 100 = 99+1 = 98+2 = 97+3,..., de forma similar a como también Serapis indicó en otro mensaje con menos números, y de ahí deducir cuanto sumaban los 100 primeros números naturales (1+2+3+...+100). Pero la ecuación general no la dedujo él.
Yo, por mi parte no se me ocurre otra forma de deducirla, tampoco puede haber tantas. Y si existen, lo más normal es que se demuestre que, en realidad, son equivalentes y es simplemente otra forma de deducir lo mismo.
Algo parecido a la formulación matricial de la Mecánica Cuántica de Heisenberg y la formulación de la Mecánica Ondulatoria de Schrödinger, que se demostró posteriormente que son equivalentes y que es lo mismo.
Así que si lo del enfoque, lo que pretende es que se me ocurra otra forma de demostrar (distinta de las que ya existen) que la suma de los números 1+2+...+n es = n(n+1)/2; pues no, no se me ocurre. (Y si se me ocurriera lo más probable es que fuese algo equivalente a las demostraciones que ya hay).
2) Puede que no sea éso lo que se pregunta, sino lo que yo creí inicialmente, que la pregunta es: dada una sucesión de números naturales que se sabe que responden a una fórmula polinómica: ¿existe algún método para encontrar esa fórmula?
Y entonces me tengo que remitir a mi primera respuesta: creo que no porque puede haber infinitas posibilidades.
Para poner un ejemplo, en un mensaje anterior puse cómo ejemplo de una sucesión la siguiente:
1, 280, 565, 856, 1.153, 1.456, 1.765,...
Pues bien, el término general -la fórmula mediante la que se pueden calcular los términos de la sucesión, es:
51(n-27)+(43+n)3n+90n+1105
¿Qué cómo lo sé? ... Pues porque me la inventé yo, naturalmente.
Pero la cuestión es que se podrían cambiar el 51 por, por ejemplo, el 53, o el 467. De igual forma el 43, el 3 de "3n", o el 90, o el 1105, o cambiar los signos, o añadir más términos, como por ejemplo -3576(n-10) o aumentar exponentes, o...
Por eso, como puede haber un nº indeterminado de sumandos, restandos, multiplicandos, dividendos, exponentes, y, además cada uno de ellos puede ser cualquier nº natural, y además los coeficientes (51, 27, 43, 3, 90, 1105,...) puede ser cualquiera, ya que existen infinitos números naturales...
... pues es por éso que no creo que exista un método determinado para encontrar la fórmula polinómica -término general- de una sucesión; a partir de los números de la propia sucesión.
Así que en este segundo caso mi enfoque es el mismo que ya dije en mi primer mensaje: no existe forma (o al menos a mi no se me ocurre) de encontrar el término general de una sucesión de números naturales, aunque se sepa que corresponden a una fórmula polinómica.
Eso es lo que quiero, exactamente que descubras la forma de llegar a la misma conclusión de Gauss por el mismo camino o descubrir un nuevo camino.
Ya podrás opinar, criticar andarte por las ramas troleando un post que podría llegar a ser interesante. Con tu nivel cuando te diga que la factorización no es el único camino. Para
Enfocar X.Y = P. Estaba motivado a compartir pero veo que hay poco interés, ya que lo sabes todo. Yo en particular cada día que pasa me doy cuenta de que soy más ignorante.