Tres pumtos en header de funciones.

Iniciado por aurquiel, 25 Julio 2018, 22:12 PM

0 Miembros y 2 Visitantes están viendo este tema.

aurquiel

Esta viendo el codigo de LIBUSB una libreria para manejar USB a alto nivel y me tope con esto

int usbi_snprintf(char *dst, size_t size, const char *format, ...);

Que son esos tres puntos o que significan?

Aqui el codigo completo

/*
* Internal header for libusb
* Copyright © 2007-2009 Daniel Drake <dsd@gentoo.org>
* Copyright © 2001 Johannes Erdfelt <johannes@erdfelt.com>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/

#ifndef LIBUSBI_H
#define LIBUSBI_H

#include <config.h>

#include <stdlib.h>

#include <stddef.h>
#include <stdint.h>
#include <time.h>
#include <stdarg.h>
#ifdef HAVE_POLL_H
#include <poll.h>
#endif
#ifdef HAVE_MISSING_H
#include <missing.h>
#endif

#include "libusb.h"
#include "version.h"

/* Attribute to ensure that a structure member is aligned to a natural
* pointer alignment. Used for os_priv member. */
#if defined(_MSC_VER)
#if defined(_WIN64)
#define PTR_ALIGNED __declspec(align(8))
#else
#define PTR_ALIGNED __declspec(align(4))
#endif
#elif defined(__GNUC__)
#define PTR_ALIGNED __attribute__((aligned(sizeof(void *))))
#else
#define PTR_ALIGNED
#endif

/* Inside the libusb code, mark all public functions as follows:
*   return_type API_EXPORTED function_name(params) { ... }
* But if the function returns a pointer, mark it as follows:
*   DEFAULT_VISIBILITY return_type * LIBUSB_CALL function_name(params) { ... }
* In the libusb public header, mark all declarations as:
*   return_type LIBUSB_CALL function_name(params);
*/
#define API_EXPORTED LIBUSB_CALL DEFAULT_VISIBILITY

#ifdef __cplusplus
extern "C" {
#endif

#define DEVICE_DESC_LENGTH 18

#define USB_MAXENDPOINTS 32
#define USB_MAXINTERFACES 32
#define USB_MAXCONFIG 8

/* Backend specific capabilities */
#define USBI_CAP_HAS_HID_ACCESS 0x00010000
#define USBI_CAP_SUPPORTS_DETACH_KERNEL_DRIVER 0x00020000

/* Maximum number of bytes in a log line */
#define USBI_MAX_LOG_LEN 1024
/* Terminator for log lines */
#define USBI_LOG_LINE_END "\n"

/* The following is used to silence warnings for unused variables */
#define UNUSED(var) do { (void)(var); } while(0)

#if !defined(ARRAYSIZE)
#define ARRAYSIZE(array) (sizeof(array) / sizeof(array[0]))
#endif

struct list_head {
struct list_head *prev, *next;
};

/* Get an entry from the list
*  ptr - the address of this list_head element in "type"
*  type - the data type that contains "member"
*  member - the list_head element in "type"
*/
#define list_entry(ptr, type, member) \
((type *)((uintptr_t)(ptr) - (uintptr_t)offsetof(type, member)))

#define list_first_entry(ptr, type, member) \
list_entry((ptr)->next, type, member)

/* Get each entry from a list
*  pos - A structure pointer has a "member" element
*  head - list head
*  member - the list_head element in "pos"
*  type - the type of the first parameter
*/
#define list_for_each_entry(pos, head, member, type) \
for (pos = list_entry((head)->next, type, member); \
&pos->member != (head); \
pos = list_entry(pos->member.next, type, member))

#define list_for_each_entry_safe(pos, n, head, member, type) \
for (pos = list_entry((head)->next, type, member), \
n = list_entry(pos->member.next, type, member); \
&pos->member != (head); \
pos = n, n = list_entry(n->member.next, type, member))

#define list_empty(entry) ((entry)->next == (entry))

static inline void list_init(struct list_head *entry)
{
entry->prev = entry->next = entry;
}

static inline void list_add(struct list_head *entry, struct list_head *head)
{
entry->next = head->next;
entry->prev = head;

head->next->prev = entry;
head->next = entry;
}

static inline void list_add_tail(struct list_head *entry,
struct list_head *head)
{
entry->next = head;
entry->prev = head->prev;

head->prev->next = entry;
head->prev = entry;
}

static inline void list_del(struct list_head *entry)
{
entry->next->prev = entry->prev;
entry->prev->next = entry->next;
entry->next = entry->prev = NULL;
}

static inline void list_cut(struct list_head *list, struct list_head *head)
{
if (list_empty(head))
return;

list->next = head->next;
list->next->prev = list;
list->prev = head->prev;
list->prev->next = list;

list_init(head);
}

static inline void *usbi_reallocf(void *ptr, size_t size)
{
void *ret = realloc(ptr, size);
if (!ret)
free(ptr);
return ret;
}

#define container_of(ptr, type, member) ({ \
const typeof( ((type *)0)->member ) *mptr = (ptr); \
(type *)( (char *)mptr - offsetof(type,member) );})

#ifndef CLAMP
#define CLAMP(val, min, max) ((val) < (min) ? (min) : ((val) > (max) ? (max) : (val)))
#endif
#ifndef MIN
#define MIN(a, b) ((a) < (b) ? (a) : (b))
#endif
#ifndef MAX
#define MAX(a, b) ((a) > (b) ? (a) : (b))
#endif

#define TIMESPEC_IS_SET(ts) ((ts)->tv_sec != 0 || (ts)->tv_nsec != 0)

#if defined(_WIN32) || defined(__CYGWIN__) || defined(_WIN32_WCE)
#define TIMEVAL_TV_SEC_TYPE long
#else
#define TIMEVAL_TV_SEC_TYPE time_t
#endif

/* Some platforms don't have this define */
#ifndef TIMESPEC_TO_TIMEVAL
#define TIMESPEC_TO_TIMEVAL(tv, ts) \
do { \
(tv)->tv_sec = (TIMEVAL_TV_SEC_TYPE) (ts)->tv_sec; \
(tv)->tv_usec = (ts)->tv_nsec / 1000; \
} while (0)
#endif

#ifdef ENABLE_LOGGING

#if defined(_MSC_VER) && (_MSC_VER < 1900)
#define snprintf usbi_snprintf
#define vsnprintf usbi_vsnprintf
int usbi_snprintf(char *dst, size_t size, const char *format, ...);
int usbi_vsnprintf(char *dst, size_t size, const char *format, va_list ap);
#define LIBUSB_PRINTF_WIN32
#endif /* defined(_MSC_VER) && (_MSC_VER < 1900) */

void usbi_log(struct libusb_context *ctx, enum libusb_log_level level,
const char *function, const char *format, ...);

void usbi_log_v(struct libusb_context *ctx, enum libusb_log_level level,
const char *function, const char *format, va_list args);

#if !defined(_MSC_VER) || (_MSC_VER >= 1400)

#define _usbi_log(ctx, level, ...) usbi_log(ctx, level, __FUNCTION__, __VA_ARGS__)

#define usbi_err(ctx, ...) _usbi_log(ctx, LIBUSB_LOG_LEVEL_ERROR, __VA_ARGS__)
#define usbi_warn(ctx, ...) _usbi_log(ctx, LIBUSB_LOG_LEVEL_WARNING, __VA_ARGS__)
#define usbi_info(ctx, ...) _usbi_log(ctx, LIBUSB_LOG_LEVEL_INFO, __VA_ARGS__)
#define usbi_dbg(...) _usbi_log(NULL, LIBUSB_LOG_LEVEL_DEBUG, __VA_ARGS__)

#else /* !defined(_MSC_VER) || (_MSC_VER >= 1400) */

#define LOG_BODY(ctxt, level) \
{ \
va_list args; \
va_start(args, format); \
usbi_log_v(ctxt, level, "", format, args); \
va_end(args); \
}

static inline void usbi_err(struct libusb_context *ctx, const char *format, ...)
LOG_BODY(ctx, LIBUSB_LOG_LEVEL_ERROR)
static inline void usbi_warn(struct libusb_context *ctx, const char *format, ...)
LOG_BODY(ctx, LIBUSB_LOG_LEVEL_WARNING)
static inline void usbi_info(struct libusb_context *ctx, const char *format, ...)
LOG_BODY(ctx, LIBUSB_LOG_LEVEL_INFO)
static inline void usbi_dbg(const char *format, ...)
LOG_BODY(NULL, LIBUSB_LOG_LEVEL_DEBUG)

#endif /* !defined(_MSC_VER) || (_MSC_VER >= 1400) */

#else /* ENABLE_LOGGING */

#define usbi_err(ctx, ...) do { (void)ctx; } while (0)
#define usbi_warn(ctx, ...) do { (void)ctx; } while (0)
#define usbi_info(ctx, ...) do { (void)ctx; } while (0)
#define usbi_dbg(...) do {} while (0)

#endif /* ENABLE_LOGGING */

#define USBI_GET_CONTEXT(ctx) \
do { \
if (!(ctx)) \
(ctx) = usbi_default_context; \
} while(0)

#define DEVICE_CTX(dev) ((dev)->ctx)
#define HANDLE_CTX(handle) (DEVICE_CTX((handle)->dev))
#define TRANSFER_CTX(transfer) (HANDLE_CTX((transfer)->dev_handle))
#define ITRANSFER_CTX(transfer) \
(TRANSFER_CTX(USBI_TRANSFER_TO_LIBUSB_TRANSFER(transfer)))

#define IS_EPIN(ep) (0 != ((ep) & LIBUSB_ENDPOINT_IN))
#define IS_EPOUT(ep) (!IS_EPIN(ep))
#define IS_XFERIN(xfer) (0 != ((xfer)->endpoint & LIBUSB_ENDPOINT_IN))
#define IS_XFEROUT(xfer) (!IS_XFERIN(xfer))

/* Internal abstraction for thread synchronization */
#if defined(THREADS_POSIX)
#include "os/threads_posix.h"
#elif defined(OS_WINDOWS) || defined(OS_WINCE)
#include "os/threads_windows.h"
#endif

extern struct libusb_context *usbi_default_context;

/* Forward declaration for use in context (fully defined inside poll abstraction) */
struct pollfd;

struct libusb_context {
#if defined(ENABLE_LOGGING) && !defined(ENABLE_DEBUG_LOGGING)
enum libusb_log_level debug;
int debug_fixed;
#endif

/* internal event pipe, used for signalling occurrence of an internal event. */
int event_pipe[2];

struct list_head usb_devs;
usbi_mutex_t usb_devs_lock;

/* A list of open handles. Backends are free to traverse this if required.
*/
struct list_head open_devs;
usbi_mutex_t open_devs_lock;

/* A list of registered hotplug callbacks */
struct list_head hotplug_cbs;
libusb_hotplug_callback_handle next_hotplug_cb_handle;
usbi_mutex_t hotplug_cbs_lock;

/* this is a list of in-flight transfer handles, sorted by timeout
* expiration. URBs to timeout the soonest are placed at the beginning of
* the list, URBs that will time out later are placed after, and urbs with
* infinite timeout are always placed at the very end. */
struct list_head flying_transfers;
/* Note paths taking both this and usbi_transfer->lock must always
* take this lock first */
usbi_mutex_t flying_transfers_lock;

/* user callbacks for pollfd changes */
libusb_pollfd_added_cb fd_added_cb;
libusb_pollfd_removed_cb fd_removed_cb;
void *fd_cb_user_data;

/* ensures that only one thread is handling events at any one time */
usbi_mutex_t events_lock;

/* used to see if there is an active thread doing event handling */
int event_handler_active;

/* A thread-local storage key to track which thread is performing event
* handling */
usbi_tls_key_t event_handling_key;

/* used to wait for event completion in threads other than the one that is
* event handling */
usbi_mutex_t event_waiters_lock;
usbi_cond_t event_waiters_cond;

/* A lock to protect internal context event data. */
usbi_mutex_t event_data_lock;

/* A bitmask of flags that are set to indicate specific events that need to
* be handled. Protected by event_data_lock. */
unsigned int event_flags;

/* A counter that is set when we want to interrupt and prevent event handling,
* in order to safely close a device. Protected by event_data_lock. */
unsigned int device_close;

/* list and count of poll fds and an array of poll fd structures that is
* (re)allocated as necessary prior to polling. Protected by event_data_lock. */
struct list_head ipollfds;
struct pollfd *pollfds;
POLL_NFDS_TYPE pollfds_cnt;

/* A list of pending hotplug messages. Protected by event_data_lock. */
struct list_head hotplug_msgs;

/* A list of pending completed transfers. Protected by event_data_lock. */
struct list_head completed_transfers;

#ifdef USBI_TIMERFD_AVAILABLE
/* used for timeout handling, if supported by OS.
* this timerfd is maintained to trigger on the next pending timeout */
int timerfd;
#endif

struct list_head list;

PTR_ALIGNED unsigned char os_priv[ZERO_SIZED_ARRAY];
};

enum usbi_event_flags {
/* The list of pollfds has been modified */
USBI_EVENT_POLLFDS_MODIFIED = 1 << 0,

/* The user has interrupted the event handler */
USBI_EVENT_USER_INTERRUPT = 1 << 1,

/* A hotplug callback deregistration is pending */
USBI_EVENT_HOTPLUG_CB_DEREGISTERED = 1 << 2,
};

/* Macros for managing event handling state */
#define usbi_handling_events(ctx) \
(usbi_tls_key_get((ctx)->event_handling_key) != NULL)

#define usbi_start_event_handling(ctx) \
usbi_tls_key_set((ctx)->event_handling_key, ctx)

#define usbi_end_event_handling(ctx) \
usbi_tls_key_set((ctx)->event_handling_key, NULL)

/* Update the following macro if new event sources are added */
#define usbi_pending_events(ctx) \
((ctx)->event_flags || (ctx)->device_close \
|| !list_empty(&(ctx)->hotplug_msgs) || !list_empty(&(ctx)->completed_transfers))

#ifdef USBI_TIMERFD_AVAILABLE
#define usbi_using_timerfd(ctx) ((ctx)->timerfd >= 0)
#else
#define usbi_using_timerfd(ctx) (0)
#endif

struct libusb_device {
/* lock protects refcnt, everything else is finalized at initialization
* time */
usbi_mutex_t lock;
int refcnt;

struct libusb_context *ctx;

uint8_t bus_number;
uint8_t port_number;
struct libusb_device* parent_dev;
uint8_t device_address;
uint8_t num_configurations;
enum libusb_speed speed;

struct list_head list;
unsigned long session_data;

struct libusb_device_descriptor device_descriptor;
int attached;

PTR_ALIGNED unsigned char os_priv[ZERO_SIZED_ARRAY];
};

struct libusb_device_handle {
/* lock protects claimed_interfaces */
usbi_mutex_t lock;
unsigned long claimed_interfaces;

struct list_head list;
struct libusb_device *dev;
int auto_detach_kernel_driver;

PTR_ALIGNED unsigned char os_priv[ZERO_SIZED_ARRAY];
};

enum {
USBI_CLOCK_MONOTONIC,
USBI_CLOCK_REALTIME
};

/* in-memory transfer layout:
*
* 1. struct usbi_transfer
* 2. struct libusb_transfer (which includes iso packets) [variable size]
* 3. os private data [variable size]
*
* from a libusb_transfer, you can get the usbi_transfer by rewinding the
* appropriate number of bytes.
* the usbi_transfer includes the number of allocated packets, so you can
* determine the size of the transfer and hence the start and length of the
* OS-private data.
*/

struct usbi_transfer {
int num_iso_packets;
struct list_head list;
struct list_head completed_list;
struct timeval timeout;
int transferred;
uint32_t stream_id;
uint8_t state_flags;   /* Protected by usbi_transfer->lock */
uint8_t timeout_flags; /* Protected by the flying_stransfers_lock */

/* this lock is held during libusb_submit_transfer() and
* libusb_cancel_transfer() (allowing the OS backend to prevent duplicate
* cancellation, submission-during-cancellation, etc). the OS backend
* should also take this lock in the handle_events path, to prevent the user
* cancelling the transfer from another thread while you are processing
* its completion (presumably there would be races within your OS backend
* if this were possible).
* Note paths taking both this and the flying_transfers_lock must
* always take the flying_transfers_lock first */
usbi_mutex_t lock;
};

enum usbi_transfer_state_flags {
/* Transfer successfully submitted by backend */
USBI_TRANSFER_IN_FLIGHT = 1 << 0,

/* Cancellation was requested via libusb_cancel_transfer() */
USBI_TRANSFER_CANCELLING = 1 << 1,

/* Operation on the transfer failed because the device disappeared */
USBI_TRANSFER_DEVICE_DISAPPEARED = 1 << 2,
};

enum usbi_transfer_timeout_flags {
/* Set by backend submit_transfer() if the OS handles timeout */
USBI_TRANSFER_OS_HANDLES_TIMEOUT = 1 << 0,

/* The transfer timeout has been handled */
USBI_TRANSFER_TIMEOUT_HANDLED = 1 << 1,

/* The transfer timeout was successfully processed */
USBI_TRANSFER_TIMED_OUT = 1 << 2,
};

#define USBI_TRANSFER_TO_LIBUSB_TRANSFER(transfer) \
((struct libusb_transfer *)(((unsigned char *)(transfer)) \
+ sizeof(struct usbi_transfer)))
#define LIBUSB_TRANSFER_TO_USBI_TRANSFER(transfer) \
((struct usbi_transfer *)(((unsigned char *)(transfer)) \
- sizeof(struct usbi_transfer)))

static inline void *usbi_transfer_get_os_priv(struct usbi_transfer *transfer)
{
return ((unsigned char *)transfer) + sizeof(struct usbi_transfer)
+ sizeof(struct libusb_transfer)
+ (transfer->num_iso_packets
* sizeof(struct libusb_iso_packet_descriptor));
}

/* bus structures */

/* All standard descriptors have these 2 fields in common */
struct usb_descriptor_header {
uint8_t bLength;
uint8_t bDescriptorType;
};

/* shared data and functions */

int usbi_io_init(struct libusb_context *ctx);
void usbi_io_exit(struct libusb_context *ctx);

struct libusb_device *usbi_alloc_device(struct libusb_context *ctx,
unsigned long session_id);
struct libusb_device *usbi_get_device_by_session_id(struct libusb_context *ctx,
unsigned long session_id);
int usbi_sanitize_device(struct libusb_device *dev);
void usbi_handle_disconnect(struct libusb_device_handle *dev_handle);

int usbi_handle_transfer_completion(struct usbi_transfer *itransfer,
enum libusb_transfer_status status);
int usbi_handle_transfer_cancellation(struct usbi_transfer *transfer);
void usbi_signal_transfer_completion(struct usbi_transfer *transfer);

int usbi_parse_descriptor(const unsigned char *source, const char *descriptor,
void *dest, int host_endian);
int usbi_device_cache_descriptor(libusb_device *dev);
int usbi_get_config_index_by_value(struct libusb_device *dev,
uint8_t bConfigurationValue, int *idx);

void usbi_connect_device (struct libusb_device *dev);
void usbi_disconnect_device (struct libusb_device *dev);

int usbi_signal_event(struct libusb_context *ctx);
int usbi_clear_event(struct libusb_context *ctx);

/* Internal abstraction for poll (needs struct usbi_transfer on Windows) */
#if defined(OS_LINUX) || defined(OS_DARWIN) || defined(OS_OPENBSD) || defined(OS_NETBSD) ||\
defined(OS_HAIKU) || defined(OS_SUNOS)
#include <unistd.h>
#include "os/poll_posix.h"
#elif defined(OS_WINDOWS) || defined(OS_WINCE)
#include "os/poll_windows.h"
#endif

struct usbi_pollfd {
/* must come first */
struct libusb_pollfd pollfd;

struct list_head list;
};

int usbi_add_pollfd(struct libusb_context *ctx, int fd, short events);
void usbi_remove_pollfd(struct libusb_context *ctx, int fd);

/* device discovery */

/* we traverse usbfs without knowing how many devices we are going to find.
* so we create this discovered_devs model which is similar to a linked-list
* which grows when required. it can be freed once discovery has completed,
* eliminating the need for a list node in the libusb_device structure
* itself. */
struct discovered_devs {
size_t len;
size_t capacity;
struct libusb_device *devices[ZERO_SIZED_ARRAY];
};

struct discovered_devs *discovered_devs_append(
struct discovered_devs *discdevs, struct libusb_device *dev);

/* OS abstraction */

/* This is the interface that OS backends need to implement.
* All fields are mandatory, except ones explicitly noted as optional. */
struct usbi_os_backend {
/* A human-readable name for your backend, e.g. "Linux usbfs" */
const char *name;

/* Binary mask for backend specific capabilities */
uint32_t caps;

/* Perform initialization of your backend. You might use this function
* to determine specific capabilities of the system, allocate required
* data structures for later, etc.
*
* This function is called when a libusb user initializes the library
* prior to use.
*
* Return 0 on success, or a LIBUSB_ERROR code on failure.
*/
int (*init)(struct libusb_context *ctx);

/* Deinitialization. Optional. This function should destroy anything
* that was set up by init.
*
* This function is called when the user deinitializes the library.
*/
void (*exit)(struct libusb_context *ctx);

/* Set a backend-specific option. Optional.
*
* This function is called when the user calls libusb_set_option() and
* the option is not handled by the core library.
*
* Return 0 on success, or a LIBUSB_ERROR code on failure.
*/
int (*set_option)(struct libusb_context *ctx, enum libusb_option option,
va_list args);

/* Enumerate all the USB devices on the system, returning them in a list
* of discovered devices.
*
* Your implementation should enumerate all devices on the system,
* regardless of whether they have been seen before or not.
*
* When you have found a device, compute a session ID for it. The session
* ID should uniquely represent that particular device for that particular
* connection session since boot (i.e. if you disconnect and reconnect a
* device immediately after, it should be assigned a different session ID).
* If your OS cannot provide a unique session ID as described above,
* presenting a session ID of (bus_number << 8 | device_address) should
* be sufficient. Bus numbers and device addresses wrap and get reused,
* but that is an unlikely case.
*
* After computing a session ID for a device, call
* usbi_get_device_by_session_id(). This function checks if libusb already
* knows about the device, and if so, it provides you with a reference
* to a libusb_device structure for it.
*
* If usbi_get_device_by_session_id() returns NULL, it is time to allocate
* a new device structure for the device. Call usbi_alloc_device() to
* obtain a new libusb_device structure with reference count 1. Populate
* the bus_number and device_address attributes of the new device, and
* perform any other internal backend initialization you need to do. At
* this point, you should be ready to provide device descriptors and so
* on through the get_*_descriptor functions. Finally, call
* usbi_sanitize_device() to perform some final sanity checks on the
* device. Assuming all of the above succeeded, we can now continue.
* If any of the above failed, remember to unreference the device that
* was returned by usbi_alloc_device().
*
* At this stage we have a populated libusb_device structure (either one
* that was found earlier, or one that we have just allocated and
* populated). This can now be added to the discovered devices list
* using discovered_devs_append(). Note that discovered_devs_append()
* may reallocate the list, returning a new location for it, and also
* note that reallocation can fail. Your backend should handle these
* error conditions appropriately.
*
* This function should not generate any bus I/O and should not block.
* If I/O is required (e.g. reading the active configuration value), it is
* OK to ignore these suggestions :)
*
* This function is executed when the user wishes to retrieve a list
* of USB devices connected to the system.
*
* If the backend has hotplug support, this function is not used!
*
* Return 0 on success, or a LIBUSB_ERROR code on failure.
*/
int (*get_device_list)(struct libusb_context *ctx,
struct discovered_devs **discdevs);

/* Apps which were written before hotplug support, may listen for
* hotplug events on their own and call libusb_get_device_list on
* device addition. In this case libusb_get_device_list will likely
* return a list without the new device in there, as the hotplug
* event thread will still be busy enumerating the device, which may
* take a while, or may not even have seen the event yet.
*
* To avoid this libusb_get_device_list will call this optional
* function for backends with hotplug support before copying
* ctx->usb_devs to the user. In this function the backend should
* ensure any pending hotplug events are fully processed before
* returning.
*
* Optional, should be implemented by backends with hotplug support.
*/
void (*hotplug_poll)(void);

/* Open a device for I/O and other USB operations. The device handle
* is preallocated for you, you can retrieve the device in question
* through handle->dev.
*
* Your backend should allocate any internal resources required for I/O
* and other operations so that those operations can happen (hopefully)
* without hiccup. This is also a good place to inform libusb that it
* should monitor certain file descriptors related to this device -
* see the usbi_add_pollfd() function.
*
* This function should not generate any bus I/O and should not block.
*
* This function is called when the user attempts to obtain a device
* handle for a device.
*
* Return:
* - 0 on success
* - LIBUSB_ERROR_ACCESS if the user has insufficient permissions
* - LIBUSB_ERROR_NO_DEVICE if the device has been disconnected since
*   discovery
* - another LIBUSB_ERROR code on other failure
*
* Do not worry about freeing the handle on failed open, the upper layers
* do this for you.
*/
int (*open)(struct libusb_device_handle *dev_handle);

/* Close a device such that the handle cannot be used again. Your backend
* should destroy any resources that were allocated in the open path.
* This may also be a good place to call usbi_remove_pollfd() to inform
* libusb of any file descriptors associated with this device that should
* no longer be monitored.
*
* This function is called when the user closes a device handle.
*/
void (*close)(struct libusb_device_handle *dev_handle);

/* Retrieve the device descriptor from a device.
*
* The descriptor should be retrieved from memory, NOT via bus I/O to the
* device. This means that you may have to cache it in a private structure
* during get_device_list enumeration. Alternatively, you may be able
* to retrieve it from a kernel interface (some Linux setups can do this)
* still without generating bus I/O.
*
* This function is expected to write DEVICE_DESC_LENGTH (18) bytes into
* buffer, which is guaranteed to be big enough.
*
* This function is called when sanity-checking a device before adding
* it to the list of discovered devices, and also when the user requests
* to read the device descriptor.
*
* This function is expected to return the descriptor in bus-endian format
* (LE). If it returns the multi-byte values in host-endian format,
* set the host_endian output parameter to "1".
*
* Return 0 on success or a LIBUSB_ERROR code on failure.
*/
int (*get_device_descriptor)(struct libusb_device *device,
unsigned char *buffer, int *host_endian);

/* Get the ACTIVE configuration descriptor for a device.
*
* The descriptor should be retrieved from memory, NOT via bus I/O to the
* device. This means that you may have to cache it in a private structure
* during get_device_list enumeration. You may also have to keep track
* of which configuration is active when the user changes it.
*
* This function is expected to write len bytes of data into buffer, which
* is guaranteed to be big enough. If you can only do a partial write,
* return an error code.
*
* This function is expected to return the descriptor in bus-endian format
* (LE). If it returns the multi-byte values in host-endian format,
* set the host_endian output parameter to "1".
*
* Return:
* - 0 on success
* - LIBUSB_ERROR_NOT_FOUND if the device is in unconfigured state
* - another LIBUSB_ERROR code on other failure
*/
int (*get_active_config_descriptor)(struct libusb_device *device,
unsigned char *buffer, size_t len, int *host_endian);

/* Get a specific configuration descriptor for a device.
*
* The descriptor should be retrieved from memory, NOT via bus I/O to the
* device. This means that you may have to cache it in a private structure
* during get_device_list enumeration.
*
* The requested descriptor is expressed as a zero-based index (i.e. 0
* indicates that we are requesting the first descriptor). The index does
* not (necessarily) equal the bConfigurationValue of the configuration
* being requested.
*
* This function is expected to write len bytes of data into buffer, which
* is guaranteed to be big enough. If you can only do a partial write,
* return an error code.
*
* This function is expected to return the descriptor in bus-endian format
* (LE). If it returns the multi-byte values in host-endian format,
* set the host_endian output parameter to "1".
*
* Return the length read on success or a LIBUSB_ERROR code on failure.
*/
int (*get_config_descriptor)(struct libusb_device *device,
uint8_t config_index, unsigned char *buffer, size_t len,
int *host_endian);

/* Like get_config_descriptor but then by bConfigurationValue instead
* of by index.
*
* Optional, if not present the core will call get_config_descriptor
* for all configs until it finds the desired bConfigurationValue.
*
* Returns a pointer to the raw-descriptor in *buffer, this memory
* is valid as long as device is valid.
*
* Returns the length of the returned raw-descriptor on success,
* or a LIBUSB_ERROR code on failure.
*/
int (*get_config_descriptor_by_value)(struct libusb_device *device,
uint8_t bConfigurationValue, unsigned char **buffer,
int *host_endian);

/* Get the bConfigurationValue for the active configuration for a device.
* Optional. This should only be implemented if you can retrieve it from
* cache (don't generate I/O).
*
* If you cannot retrieve this from cache, either do not implement this
* function, or return LIBUSB_ERROR_NOT_SUPPORTED. This will cause
* libusb to retrieve the information through a standard control transfer.
*
* This function must be non-blocking.
* Return:
* - 0 on success
* - LIBUSB_ERROR_NO_DEVICE if the device has been disconnected since it
*   was opened
* - LIBUSB_ERROR_NOT_SUPPORTED if the value cannot be retrieved without
*   blocking
* - another LIBUSB_ERROR code on other failure.
*/
int (*get_configuration)(struct libusb_device_handle *dev_handle, int *config);

/* Set the active configuration for a device.
*
* A configuration value of -1 should put the device in unconfigured state.
*
* This function can block.
*
* Return:
* - 0 on success
* - LIBUSB_ERROR_NOT_FOUND if the configuration does not exist
* - LIBUSB_ERROR_BUSY if interfaces are currently claimed (and hence
*   configuration cannot be changed)
* - LIBUSB_ERROR_NO_DEVICE if the device has been disconnected since it
*   was opened
* - another LIBUSB_ERROR code on other failure.
*/
int (*set_configuration)(struct libusb_device_handle *dev_handle, int config);

/* Claim an interface. When claimed, the application can then perform
* I/O to an interface's endpoints.
*
* This function should not generate any bus I/O and should not block.
* Interface claiming is a logical operation that simply ensures that
* no other drivers/applications are using the interface, and after
* claiming, no other drivers/applications can use the interface because
* we now "own" it.
*
* Return:
* - 0 on success
* - LIBUSB_ERROR_NOT_FOUND if the interface does not exist
* - LIBUSB_ERROR_BUSY if the interface is in use by another driver/app
* - LIBUSB_ERROR_NO_DEVICE if the device has been disconnected since it
*   was opened
* - another LIBUSB_ERROR code on other failure
*/
int (*claim_interface)(struct libusb_device_handle *dev_handle, int interface_number);

/* Release a previously claimed interface.
*
* This function should also generate a SET_INTERFACE control request,
* resetting the alternate setting of that interface to 0. It's OK for
* this function to block as a result.
*
* You will only ever be asked to release an interface which was
* successfully claimed earlier.
*
* Return:
* - 0 on success
* - LIBUSB_ERROR_NO_DEVICE if the device has been disconnected since it
*   was opened
* - another LIBUSB_ERROR code on other failure
*/
int (*release_interface)(struct libusb_device_handle *dev_handle, int interface_number);

/* Set the alternate setting for an interface.
*
* You will only ever be asked to set the alternate setting for an
* interface which was successfully claimed earlier.
*
* It's OK for this function to block.
*
* Return:
* - 0 on success
* - LIBUSB_ERROR_NOT_FOUND if the alternate setting does not exist
* - LIBUSB_ERROR_NO_DEVICE if the device has been disconnected since it
*   was opened
* - another LIBUSB_ERROR code on other failure
*/
int (*set_interface_altsetting)(struct libusb_device_handle *dev_handle,
int interface_number, int altsetting);

/* Clear a halt/stall condition on an endpoint.
*
* It's OK for this function to block.
*
* Return:
* - 0 on success
* - LIBUSB_ERROR_NOT_FOUND if the endpoint does not exist
* - LIBUSB_ERROR_NO_DEVICE if the device has been disconnected since it
*   was opened
* - another LIBUSB_ERROR code on other failure
*/
int (*clear_halt)(struct libusb_device_handle *dev_handle,
unsigned char endpoint);

/* Perform a USB port reset to reinitialize a device.
*
* If possible, the device handle should still be usable after the reset
* completes, assuming that the device descriptors did not change during
* reset and all previous interface state can be restored.
*
* If something changes, or you cannot easily locate/verify the resetted
* device, return LIBUSB_ERROR_NOT_FOUND. This prompts the application
* to close the old handle and re-enumerate the device.
*
* Return:
* - 0 on success
* - LIBUSB_ERROR_NOT_FOUND if re-enumeration is required, or if the device
*   has been disconnected since it was opened
* - another LIBUSB_ERROR code on other failure
*/
int (*reset_device)(struct libusb_device_handle *dev_handle);

/* Alloc num_streams usb3 bulk streams on the passed in endpoints */
int (*alloc_streams)(struct libusb_device_handle *dev_handle,
uint32_t num_streams, unsigned char *endpoints, int num_endpoints);

/* Free usb3 bulk streams allocated with alloc_streams */
int (*free_streams)(struct libusb_device_handle *dev_handle,
unsigned char *endpoints, int num_endpoints);

/* Allocate persistent DMA memory for the given device, suitable for
* zerocopy. May return NULL on failure. Optional to implement.
*/
unsigned char *(*dev_mem_alloc)(struct libusb_device_handle *handle,
size_t len);

/* Free memory allocated by dev_mem_alloc. */
int (*dev_mem_free)(struct libusb_device_handle *handle,
unsigned char *buffer, size_t len);

/* Determine if a kernel driver is active on an interface. Optional.
*
* The presence of a kernel driver on an interface indicates that any
* calls to claim_interface would fail with the LIBUSB_ERROR_BUSY code.
*
* Return:
* - 0 if no driver is active
* - 1 if a driver is active
* - LIBUSB_ERROR_NO_DEVICE if the device has been disconnected since it
*   was opened
* - another LIBUSB_ERROR code on other failure
*/
int (*kernel_driver_active)(struct libusb_device_handle *dev_handle,
int interface_number);

/* Detach a kernel driver from an interface. Optional.
*
* After detaching a kernel driver, the interface should be available
* for claim.
*
* Return:
* - 0 on success
* - LIBUSB_ERROR_NOT_FOUND if no kernel driver was active
* - LIBUSB_ERROR_INVALID_PARAM if the interface does not exist
* - LIBUSB_ERROR_NO_DEVICE if the device has been disconnected since it
*   was opened
* - another LIBUSB_ERROR code on other failure
*/
int (*detach_kernel_driver)(struct libusb_device_handle *dev_handle,
int interface_number);

/* Attach a kernel driver to an interface. Optional.
*
* Reattach a kernel driver to the device.
*
* Return:
* - 0 on success
* - LIBUSB_ERROR_NOT_FOUND if no kernel driver was active
* - LIBUSB_ERROR_INVALID_PARAM if the interface does not exist
* - LIBUSB_ERROR_NO_DEVICE if the device has been disconnected since it
*   was opened
* - LIBUSB_ERROR_BUSY if a program or driver has claimed the interface,
*   preventing reattachment
* - another LIBUSB_ERROR code on other failure
*/
int (*attach_kernel_driver)(struct libusb_device_handle *dev_handle,
int interface_number);

/* Destroy a device. Optional.
*
* This function is called when the last reference to a device is
* destroyed. It should free any resources allocated in the get_device_list
* path.
*/
void (*destroy_device)(struct libusb_device *dev);

/* Submit a transfer. Your implementation should take the transfer,
* morph it into whatever form your platform requires, and submit it
* asynchronously.
*
* This function must not block.
*
* This function gets called with the flying_transfers_lock locked!
*
* Return:
* - 0 on success
* - LIBUSB_ERROR_NO_DEVICE if the device has been disconnected
* - another LIBUSB_ERROR code on other failure
*/
int (*submit_transfer)(struct usbi_transfer *itransfer);

/* Cancel a previously submitted transfer.
*
* This function must not block. The transfer cancellation must complete
* later, resulting in a call to usbi_handle_transfer_cancellation()
* from the context of handle_events.
*/
int (*cancel_transfer)(struct usbi_transfer *itransfer);

/* Clear a transfer as if it has completed or cancelled, but do not
* report any completion/cancellation to the library. You should free
* all private data from the transfer as if you were just about to report
* completion or cancellation.
*
* This function might seem a bit out of place. It is used when libusb
* detects a disconnected device - it calls this function for all pending
* transfers before reporting completion (with the disconnect code) to
* the user. Maybe we can improve upon this internal interface in future.
*/
void (*clear_transfer_priv)(struct usbi_transfer *itransfer);

/* Handle any pending events on file descriptors. Optional.
*
* Provide this function when file descriptors directly indicate device
* or transfer activity. If your backend does not have such file descriptors,
* implement the handle_transfer_completion function below.
*
* This involves monitoring any active transfers and processing their
* completion or cancellation.
*
* The function is passed an array of pollfd structures (size nfds)
* as a result of the poll() system call. The num_ready parameter
* indicates the number of file descriptors that have reported events
* (i.e. the poll() return value). This should be enough information
* for you to determine which actions need to be taken on the currently
* active transfers.
*
* For any cancelled transfers, call usbi_handle_transfer_cancellation().
* For completed transfers, call usbi_handle_transfer_completion().
* For control/bulk/interrupt transfers, populate the "transferred"
* element of the appropriate usbi_transfer structure before calling the
* above functions. For isochronous transfers, populate the status and
* transferred fields of the iso packet descriptors of the transfer.
*
* This function should also be able to detect disconnection of the
* device, reporting that situation with usbi_handle_disconnect().
*
* When processing an event related to a transfer, you probably want to
* take usbi_transfer.lock to prevent races. See the documentation for
* the usbi_transfer structure.
*
* Return 0 on success, or a LIBUSB_ERROR code on failure.
*/
int (*handle_events)(struct libusb_context *ctx,
struct pollfd *fds, POLL_NFDS_TYPE nfds, int num_ready);

/* Handle transfer completion. Optional.
*
* Provide this function when there are no file descriptors available
* that directly indicate device or transfer activity. If your backend does
* have such file descriptors, implement the handle_events function above.
*
* Your backend must tell the library when a transfer has completed by
* calling usbi_signal_transfer_completion(). You should store any private
* information about the transfer and its completion status in the transfer's
* private backend data.
*
* During event handling, this function will be called on each transfer for
* which usbi_signal_transfer_completion() was called.
*
* For any cancelled transfers, call usbi_handle_transfer_cancellation().
* For completed transfers, call usbi_handle_transfer_completion().
* For control/bulk/interrupt transfers, populate the "transferred"
* element of the appropriate usbi_transfer structure before calling the
* above functions. For isochronous transfers, populate the status and
* transferred fields of the iso packet descriptors of the transfer.
*
* Return 0 on success, or a LIBUSB_ERROR code on failure.
*/
int (*handle_transfer_completion)(struct usbi_transfer *itransfer);

/* Get time from specified clock. At least two clocks must be implemented
   by the backend: USBI_CLOCK_REALTIME, and USBI_CLOCK_MONOTONIC.

   Description of clocks:
     USBI_CLOCK_REALTIME : clock returns time since system epoch.
     USBI_CLOCK_MONOTONIC: clock returns time since unspecified start
                             time (usually boot).
*/
int (*clock_gettime)(int clkid, struct timespec *tp);

#ifdef USBI_TIMERFD_AVAILABLE
/* clock ID of the clock that should be used for timerfd */
clockid_t (*get_timerfd_clockid)(void);
#endif

/* Number of bytes to reserve for per-context private backend data.
* This private data area is accessible through the "os_priv" field of
* struct libusb_context. */
size_t context_priv_size;

/* Number of bytes to reserve for per-device private backend data.
* This private data area is accessible through the "os_priv" field of
* struct libusb_device. */
size_t device_priv_size;

/* Number of bytes to reserve for per-handle private backend data.
* This private data area is accessible through the "os_priv" field of
* struct libusb_device. */
size_t device_handle_priv_size;

/* Number of bytes to reserve for per-transfer private backend data.
* This private data area is accessible by calling
* usbi_transfer_get_os_priv() on the appropriate usbi_transfer instance.
*/
size_t transfer_priv_size;
};

extern const struct usbi_os_backend usbi_backend;

extern struct list_head active_contexts_list;
extern usbi_mutex_static_t active_contexts_lock;

#ifdef __cplusplus
}
#endif

#endif

aurquiel

Me repondo a mi mismo lo malo solo lo consegui en ingles

https://en.wikipedia.org/wiki/Variadic_function#Variadic_functions_in_C.2C_Objective-C.2C_C.2B.2B.2C_and_D

Es una funcion que puede tomar una cantidad no definida de argumentos, como printf

#include <stdarg.h>
#include <stdio.h>

double average(int count, ...)
{
   va_list ap;
   int j;
   double sum = 0;

   va_start(ap, count); /* Requires the last fixed parameter (to get the address) */
   for (j = 0; j < count; j++) {
       sum += va_arg(ap, int); /* Increments ap to the next argument. */
   }
   va_end(ap);

   return sum / count;
}

int main(int argc, char const *argv[])
{
printf("%f\n", average(3, 1, 2, 3) );
return 0;
}


kotito

Hola

Siempre esta bien saber lo de los 3 puntos. ya se algo más =)

Mi duda es algo más básico, ¿cómo entiende el programa eso del "si libusbi_ no esta definido, definir libusbo_H"? osea ¿que significa para el compilador o el ide esas lineas? ¿Esto va siempre en el archivo .h o podría encontrarmelo en otros ficheros?

#ifndef LIBUSBI_H
#define LIBUSBI_H

...

#if defined(_MSC_VER)

#define PTR_ALIGNED __declspec(align(8))

...


¿Y qué significa estas otras dos lineas?



Ya se que son muchas preguntas, pero me lo encuentro en todo los códigos avanzados y me gustaría por una vez por todas, entenderlo
Agradecerimientos de antemano =)

MAFUS

Eso se llama guarda.
En ese momento aún no ha entrado en marcha el compilador, es el preprocesador quién está haciendo su trabajo para darle el código al compilador en la siguiente fase.

Para entender qué ocurre deben saberse unas cuantas cosas antes:
Un símbolo sólo se puede declarar una única vez.
Para poder usar objetos y funciones el compilador debe conocer su tamaño con anterioridad. Las librerías son objetos y funciones genéricos que se pueden usar en multitud de programas diferentes.
Para eso existen los archivos de cabecera: declaran esos símbolos para que el compilador sepa usarlos.
Una librería puede depender de otra, por lo tanto incluirá esa cabezera y si incluyeras las dos librerías en tu código tendrías el error de haber declarado dos veces el mismo símbolo.

Bien para solucionar eso están las guardas del preprocesador, que simplemente es mirar si existe un símbolo. Sí éste existe no hacer nada, pero si no existe se hace todo el trabajo necesario.
Con el #ifndef LIBUSBI_H
El preprocesado mira si el símbolo LIBUSBI_H ha sido definido con anterioridad.
Si está definido el preprocesador saltará hasta #endif.
Si no está definido lo primero que se hace es definirlo (poner la guarda para evitar que se repita la definición)
#define LIBUSBI_H
Y a partir de aquí todo el código para declarar objetos y funciones.