Necesito funciones personalizadas de math

Iniciado por CodeShut, 29 Septiembre 2013, 04:43 AM

0 Miembros y 1 Visitante están viendo este tema.

CodeShut

Hola y gracias a todos por leer mi tema, necesito algunas funciones de trigonometría pero personalizadas, no quiero las de math.h , sino unas personalizadas

http://stackoverflow.com/questions/11261170/c-and-maths-fast-approximation-of-a-trigonometric-function
http://www.nongnu.org/avr-libc/user-manual/group__avr__math.html
http://arduino.cc/es/Reference/Libraries
http://blog.oscarliang.net/enhanced-arduino-c-custom-math-library/


float __cdecl SIN_ID(int deg){

   float result = 0;
   int sign = 1;
   if (deg < 0){
       deg = -deg;
       sign = -1;
   }
   while (deg>=3600)
       deg -= 3600;
   // 0 and 90 degrees.
   if((deg >= 0) && (deg <= 900))
       result = SIN_TABLE[deg / 5];
   // 90 and 180 degrees.
   else if((deg > 900) && (deg <= 1800))
       result = SIN_TABLE[(1800-deg) / 5];
   // 180 and 270 degrees.
   else if((deg > 1800) && (deg <= 2700))
       result = -SIN_TABLE[(deg-1800) / 5];
   // 270 and 360 degrees.
   else if((deg > 2700) && (deg <= 3600))
       result = -SIN_TABLE[(3600-deg)/5];
   return sign * result;
}

float __cdecl COS_ID(int deg){
   float result = 0;
   if (deg < 0)
       deg = -deg;
   while (deg>=3600)
       deg -= 3600;
   // 0 and 90 degrees.
   if((deg >= 0) && (deg <= 900))
       result = SIN_TABLE[(900-deg) / 5];
   // 90 and 180 degrees.
   else if((deg > 900) && (deg <= 1800))
       result = -SIN_TABLE[(deg-900) / 5];
   // 180 and 270 degrees.
   else if((deg > 1800) && (deg <= 2700))
       result = -SIN_TABLE[(2700 - deg) / 5];
   // 270 and 360 degrees.
   else if((deg >= 2700) && (deg <= 3600))
       result = SIN_TABLE[(deg - 2700) / 5];
   return result;
}

unsigned long __cdecl SQRT_ID(ulong number){
   ulong root = 0;
   ulong bit = 1UL << 30;
   // Bit starts at the highest power of four <= to input number.
   while(bit > number)  bit >>= 2;
   while(bit != 0){
       if(number >= root + bit){
           number -= (root + bit);
           root += (bit << 1);
       }
       root >>= 1;
       bit >>= 2;
   }
   return root;
}

float __cdecl ACOS_ID(float num){
   float rads = 0;
   bool negative = false;
   // Get sign of input
   if(num < 0){
       negative = true;
       num = -num;
   }
   // num between 0 and 0.9.
   if((num >= 0) && (num < 0.9))
       rads = (float)ACOS_TABLE[(int)(num*DEC4/79+0.5)] * 0.00616;
   // num between 0.9 and 0.99.
   else if ((num >= 0.9) && (num < 0.99))
       rads = (float)ACOS_TABLE[(int)((num*DEC4-9000)/8 + 0.5) + 114] * 0.00616;
   // num between 0.99 and 1.0.
   else if ((num >= 0.99) && (num <= 1))
       rads = (float)ACOS_TABLE[(int)((num*DEC4-9900)/2 + 0.5) + 227] * 0.00616;
   // Account for the negative sign if required.
   if(negative)
       rads = PI - rads;
   return rads;
}

float __cdecl ATAN2_ID(float opp, float adj){
   float hypt = SQRT_ID(adj * adj + opp * opp);
   float rad = ACOS_ID(adj/hypt);
   if(opp < 0)
       rad = -rad;
   return rad;
}


esas son las funciones que quiero usar pero necesito las tablas lookup como fue sugerido en uno de esos links que se encuentran al principio.
quisiera ayuda para poner en funcionamiento este código porque no se encuentra terminado, faltan las tablas SIN_TABLE, ACOS_TABLE y unas macro (DEC4) y en realidad no se cómo rellenar lo que falta . desde ya que agradezco cualquier respuesta para colaborar con estas funciones.

CodeShut

http://stackoverflow.com/questions/11261170/c-and-maths-fast-approximation-of-a-trigonometric-function
http://stackoverflow.com/questions/5777110/fast-implementation-of-trigonometric-functions-for-c

aver en este link sale una especie de tabla
https://pastee.org/dhwbj

parece ser el valor de sin para los grados desde 0 a 359 (360 no cuenta)
Citar
Degree[0] -> (X): [ 1           , 1           ] , [ 0           , 0          ]
Degree[1] -> (X): [ 0.999844    , 0.999848    ] , [ 0.0174531   , 0.0174524  ]
Degree[2] -> (X): [ 0.999391    , 0.999391    ] , [ 0.0349062   , 0.0348995  ]
Degree[3] -> (X): [ 0.998625    , 0.99863     ] , [ 0.0523437   , 0.052336   ]
Degree[4] -> (X): [ 0.997563    , 0.997564    ] , [ 0.06975     , 0.0697565  ]
Degree[5] -> (X): [ 0.996188    , 0.996195    ] , [ 0.0871563   , 0.0871557  ]
Degree[6] -> (X): [ 0.994516    , 0.994522    ] , [ 0.104531    , 0.104528   ]
Degree[7] -> (X): [ 0.992547    , 0.992546    ] , [ 0.121875    , 0.121869   ]
Degree[8] -> (X): [ 0.990266    , 0.990268    ] , [ 0.139172    , 0.139173   ]
Degree[9] -> (X): [ 0.987688    , 0.987688    ] , [ 0.156438    , 0.156434   ]
Degree[10] -> (X): [ 0.984812    , 0.984808    ] , [ 0.173641    , 0.173648   ]
Degree[11] -> (X): [ 0.981625    , 0.981627    ] , [ 0.190812    , 0.190809   ]
Degree[12] -> (X): [ 0.978141    , 0.978148    ] , [ 0.207906    , 0.207912   ]
Degree[13] -> (X): [ 0.974375    , 0.97437     ] , [ 0.224953    , 0.224951   ]
Degree[14] -> (X): [ 0.970297    , 0.970296    ] , [ 0.241922    , 0.241922   ]
Degree[15] -> (X): [ 0.965922    , 0.965926    ] , [ 0.258812    , 0.258819   ]
Degree[16] -> (X): [ 0.961266    , 0.961262    ] , [ 0.275641    , 0.275637   ]
Degree[17] -> (X): [ 0.956312    , 0.956305    ] , [ 0.292375    , 0.292372   ]
Degree[18] -> (X): [ 0.951063    , 0.951057    ] , [ 0.309016    , 0.309017   ]
Degree[19] -> (X): [ 0.945516    , 0.945519    ] , [ 0.325563    , 0.325568   ]
Degree[20] -> (X): [ 0.939687    , 0.939693    ] , [ 0.342016    , 0.34202    ]
Degree[21] -> (X): [ 0.933578    , 0.93358     ] , [ 0.358375    , 0.358368   ]
Degree[22] -> (X): [ 0.927188    , 0.927184    ] , [ 0.374609    , 0.374607   ]
Degree[23] -> (X): [ 0.9205      , 0.920505    ] , [ 0.390734    , 0.390731   ]
Degree[24] -> (X): [ 0.913547    , 0.913545    ] , [ 0.406734    , 0.406737   ]
Degree[25] -> (X): [ 0.906313    , 0.906308    ] , [ 0.422625    , 0.422618   ]
Degree[26] -> (X): [ 0.898797    , 0.898794    ] , [ 0.438375    , 0.438371   ]
Degree[27] -> (X): [ 0.891       , 0.891007    ] , [ 0.453984    , 0.45399    ]
Degree[28] -> (X): [ 0.882953    , 0.882948    ] , [ 0.469469    , 0.469472   ]
Degree[29] -> (X): [ 0.874625    , 0.87462     ] , [ 0.484812    , 0.48481    ]
Degree[30] -> (X): [ 0.866031    , 0.866025    ] , [ 0.5         , 0.5        ]
Degree[31] -> (X): [ 0.857172    , 0.857167    ] , [ 0.515031    , 0.515038   ]
Degree[32] -> (X): [ 0.848047    , 0.848048    ] , [ 0.529922    , 0.529919   ]
Degree[33] -> (X): [ 0.838672    , 0.838671    ] , [ 0.544641    , 0.544639   ]
Degree[34] -> (X): [ 0.829031    , 0.829038    ] , [ 0.559187    , 0.559193   ]
Degree[35] -> (X): [ 0.819156    , 0.819152    ] , [ 0.573578    , 0.573576   ]
Degree[36] -> (X): [ 0.809016    , 0.809017    ] , [ 0.587781    , 0.587785   ]
Degree[37] -> (X): [ 0.798641    , 0.798635    ] , [ 0.601812    , 0.601815   ]
Degree[38] -> (X): [ 0.788016    , 0.788011    ] , [ 0.615656    , 0.615662   ]
Degree[39] -> (X): [ 0.777141    , 0.777146    ] , [ 0.629328    , 0.62932    ]
Degree[40] -> (X): [ 0.766047    , 0.766044    ] , [ 0.642781    , 0.642788   ]
Degree[41] -> (X): [ 0.754703    , 0.75471     ] , [ 0.656062    , 0.656059   ]
Degree[42] -> (X): [ 0.743141    , 0.743145    ] , [ 0.669125    , 0.669131   ]
Degree[43] -> (X): [ 0.731359    , 0.731354    ] , [ 0.682       , 0.681998   ]
Degree[44] -> (X): [ 0.719344    , 0.71934     ] , [ 0.694656    , 0.694658   ]
Degree[45] -> (X): [ 0.707109    , 0.707107    ] , [ 0.707109    , 0.707107   ]
Degree[46] -> (X): [ 0.694656    , 0.694658    ] , [ 0.719344    , 0.71934    ]
Degree[47] -> (X): [ 0.682       , 0.681998    ] , [ 0.731359    , 0.731354   ]
Degree[48] -> (X): [ 0.669125    , 0.669131    ] , [ 0.743141    , 0.743145   ]
Degree[49] -> (X): [ 0.656062    , 0.656059    ] , [ 0.754703    , 0.75471    ]
Degree[50] -> (X): [ 0.642781    , 0.642788    ] , [ 0.766047    , 0.766044   ]
Degree[51] -> (X): [ 0.629328    , 0.62932     ] , [ 0.777141    , 0.777146   ]
Degree[52] -> (X): [ 0.615656    , 0.615662    ] , [ 0.788016    , 0.788011   ]
Degree[53] -> (X): [ 0.601812    , 0.601815    ] , [ 0.798641    , 0.798635   ]
Degree[54] -> (X): [ 0.587781    , 0.587785    ] , [ 0.809016    , 0.809017   ]
Degree[55] -> (X): [ 0.573578    , 0.573576    ] , [ 0.819156    , 0.819152   ]
Degree[56] -> (X): [ 0.559187    , 0.559193    ] , [ 0.829031    , 0.829038   ]
Degree[57] -> (X): [ 0.544641    , 0.544639    ] , [ 0.838672    , 0.838671   ]
Degree[58] -> (X): [ 0.529922    , 0.529919    ] , [ 0.848047    , 0.848048   ]
Degree[59] -> (X): [ 0.515031    , 0.515038    ] , [ 0.857172    , 0.857167   ]
Degree[60] -> (X): [ 0.5         , 0.5         ] , [ 0.866031    , 0.866025   ]
Degree[61] -> (X): [ 0.484812    , 0.48481     ] , [ 0.874625    , 0.87462    ]
Degree[62] -> (X): [ 0.469469    , 0.469472    ] , [ 0.882953    , 0.882948   ]
Degree[63] -> (X): [ 0.453984    , 0.45399     ] , [ 0.891       , 0.891007   ]
Degree[64] -> (X): [ 0.438375    , 0.438371    ] , [ 0.898797    , 0.898794   ]
Degree[65] -> (X): [ 0.422625    , 0.422618    ] , [ 0.906313    , 0.906308   ]
Degree[66] -> (X): [ 0.406734    , 0.406737    ] , [ 0.913547    , 0.913545   ]
Degree[67] -> (X): [ 0.390734    , 0.390731    ] , [ 0.9205      , 0.920505   ]
Degree[68] -> (X): [ 0.374609    , 0.374607    ] , [ 0.927188    , 0.927184   ]
Degree[69] -> (X): [ 0.358375    , 0.358368    ] , [ 0.933578    , 0.93358    ]
Degree[70] -> (X): [ 0.342016    , 0.34202     ] , [ 0.939687    , 0.939693   ]
Degree[71] -> (X): [ 0.325563    , 0.325568    ] , [ 0.945516    , 0.945519   ]
Degree[72] -> (X): [ 0.309016    , 0.309017    ] , [ 0.951063    , 0.951057   ]
Degree[73] -> (X): [ 0.292375    , 0.292372    ] , [ 0.956312    , 0.956305   ]
Degree[74] -> (X): [ 0.275641    , 0.275637    ] , [ 0.961266    , 0.961262   ]
Degree[75] -> (X): [ 0.258812    , 0.258819    ] , [ 0.965922    , 0.965926   ]
Degree[76] -> (X): [ 0.241922    , 0.241922    ] , [ 0.970297    , 0.970296   ]
Degree[77] -> (X): [ 0.224953    , 0.224951    ] , [ 0.974375    , 0.97437    ]
Degree[78] -> (X): [ 0.207906    , 0.207912    ] , [ 0.978141    , 0.978148   ]
Degree[79] -> (X): [ 0.190812    , 0.190809    ] , [ 0.981625    , 0.981627   ]
Degree[80] -> (X): [ 0.173641    , 0.173648    ] , [ 0.984812    , 0.984808   ]
Degree[81] -> (X): [ 0.156438    , 0.156434    ] , [ 0.987688    , 0.987688   ]
Degree[82] -> (X): [ 0.139172    , 0.139173    ] , [ 0.990266    , 0.990268   ]
Degree[83] -> (X): [ 0.121875    , 0.121869    ] , [ 0.992547    , 0.992546   ]
Degree[84] -> (X): [ 0.104531    , 0.104528    ] , [ 0.994516    , 0.994522   ]
Degree[85] -> (X): [ 0.0871563   , 0.0871557   ] , [ 0.996188    , 0.996195   ]
Degree[86] -> (X): [ 0.06975     , 0.0697565   ] , [ 0.997563    , 0.997564   ]
Degree[87] -> (X): [ 0.0523437   , 0.052336    ] , [ 0.998625    , 0.99863    ]
Degree[88] -> (X): [ 0.0349062   , 0.0348995   ] , [ 0.999391    , 0.999391   ]
Degree[89] -> (X): [ 0.0174531   , 0.0174524   ] , [ 0.999844    , 0.999848   ]
Degree[90] -> (X): [ -0          , 6.12323e-017 ] , [ 1           , 1          ]
Degree[91] -> (X): [ -0.0174531  , -0.0174524  ] , [ 0.999844    , 0.999848   ]
Degree[92] -> (X): [ -0.0349062  , -0.0348995  ] , [ 0.999391    , 0.999391   ]
Degree[93] -> (X): [ -0.0523437  , -0.052336   ] , [ 0.998625    , 0.99863    ]
Degree[94] -> (X): [ -0.06975    , -0.0697565  ] , [ 0.997563    , 0.997564   ]
Degree[95] -> (X): [ -0.0871563  , -0.0871557  ] , [ 0.996188    , 0.996195   ]
Degree[96] -> (X): [ -0.104531   , -0.104528   ] , [ 0.994516    , 0.994522   ]
Degree[97] -> (X): [ -0.121875   , -0.121869   ] , [ 0.992547    , 0.992546   ]
Degree[98] -> (X): [ -0.139172   , -0.139173   ] , [ 0.990266    , 0.990268   ]
Degree[99] -> (X): [ -0.156438   , -0.156434   ] , [ 0.987688    , 0.987688   ]
Degree[100] -> (X): [ -0.173641   , -0.173648   ] , [ 0.984812    , 0.984808   ]
Degree[101] -> (X): [ -0.190812   , -0.190809   ] , [ 0.981625    , 0.981627   ]
Degree[102] -> (X): [ -0.207906   , -0.207912   ] , [ 0.978141    , 0.978148   ]
Degree[103] -> (X): [ -0.224953   , -0.224951   ] , [ 0.974375    , 0.97437    ]
Degree[104] -> (X): [ -0.241922   , -0.241922   ] , [ 0.970297    , 0.970296   ]
Degree[105] -> (X): [ -0.258812   , -0.258819   ] , [ 0.965922    , 0.965926   ]
Degree[106] -> (X): [ -0.275641   , -0.275637   ] , [ 0.961266    , 0.961262   ]
Degree[107] -> (X): [ -0.292375   , -0.292372   ] , [ 0.956312    , 0.956305   ]
Degree[108] -> (X): [ -0.309016   , -0.309017   ] , [ 0.951063    , 0.951057   ]
Degree[109] -> (X): [ -0.325563   , -0.325568   ] , [ 0.945516    , 0.945519   ]
Degree[110] -> (X): [ -0.342016   , -0.34202    ] , [ 0.939687    , 0.939693   ]
Degree[111] -> (X): [ -0.358375   , -0.358368   ] , [ 0.933578    , 0.93358    ]
Degree[112] -> (X): [ -0.374609   , -0.374607   ] , [ 0.927188    , 0.927184   ]
Degree[113] -> (X): [ -0.390734   , -0.390731   ] , [ 0.9205      , 0.920505   ]
Degree[114] -> (X): [ -0.406734   , -0.406737   ] , [ 0.913547    , 0.913545   ]
Degree[115] -> (X): [ -0.422625   , -0.422618   ] , [ 0.906313    , 0.906308   ]
Degree[116] -> (X): [ -0.438375   , -0.438371   ] , [ 0.898797    , 0.898794   ]
Degree[117] -> (X): [ -0.453984   , -0.45399    ] , [ 0.891       , 0.891007   ]
Degree[118] -> (X): [ -0.469469   , -0.469472   ] , [ 0.882953    , 0.882948   ]
Degree[119] -> (X): [ -0.484812   , -0.48481    ] , [ 0.874625    , 0.87462    ]
Degree[120] -> (X): [ -0.5        , -0.5        ] , [ 0.866031    , 0.866025   ]
Degree[121] -> (X): [ -0.515031   , -0.515038   ] , [ 0.857172    , 0.857167   ]
Degree[122] -> (X): [ -0.529922   , -0.529919   ] , [ 0.848047    , 0.848048   ]
Degree[123] -> (X): [ -0.544641   , -0.544639   ] , [ 0.838672    , 0.838671   ]
Degree[124] -> (X): [ -0.559187   , -0.559193   ] , [ 0.829031    , 0.829038   ]
Degree[125] -> (X): [ -0.573578   , -0.573576   ] , [ 0.819156    , 0.819152   ]
Degree[126] -> (X): [ -0.587781   , -0.587785   ] , [ 0.809016    , 0.809017   ]
Degree[127] -> (X): [ -0.601812   , -0.601815   ] , [ 0.798641    , 0.798635   ]
Degree[128] -> (X): [ -0.615656   , -0.615662   ] , [ 0.788016    , 0.788011   ]
Degree[129] -> (X): [ -0.629328   , -0.62932    ] , [ 0.777141    , 0.777146   ]
Degree[130] -> (X): [ -0.642781   , -0.642788   ] , [ 0.766047    , 0.766044   ]
Degree[131] -> (X): [ -0.656062   , -0.656059   ] , [ 0.754703    , 0.75471    ]
Degree[132] -> (X): [ -0.669125   , -0.669131   ] , [ 0.743141    , 0.743145   ]
Degree[133] -> (X): [ -0.682      , -0.681998   ] , [ 0.731359    , 0.731354   ]
Degree[134] -> (X): [ -0.694656   , -0.694658   ] , [ 0.719344    , 0.71934    ]
Degree[135] -> (X): [ -0.707109   , -0.707107   ] , [ 0.707109    , 0.707107   ]
Degree[136] -> (X): [ -0.719344   , -0.71934    ] , [ 0.694656    , 0.694658   ]
Degree[137] -> (X): [ -0.731359   , -0.731354   ] , [ 0.682       , 0.681998   ]
Degree[138] -> (X): [ -0.743141   , -0.743145   ] , [ 0.669125    , 0.669131   ]
Degree[139] -> (X): [ -0.754703   , -0.75471    ] , [ 0.656062    , 0.656059   ]
Degree[140] -> (X): [ -0.766047   , -0.766044   ] , [ 0.642781    , 0.642788   ]
Degree[141] -> (X): [ -0.777141   , -0.777146   ] , [ 0.629328    , 0.62932    ]
Degree[142] -> (X): [ -0.788016   , -0.788011   ] , [ 0.615656    , 0.615662   ]
Degree[143] -> (X): [ -0.798641   , -0.798635   ] , [ 0.601812    , 0.601815   ]
Degree[144] -> (X): [ -0.809016   , -0.809017   ] , [ 0.587781    , 0.587785   ]
Degree[145] -> (X): [ -0.819156   , -0.819152   ] , [ 0.573578    , 0.573576   ]
Degree[146] -> (X): [ -0.829031   , -0.829038   ] , [ 0.559187    , 0.559193   ]
Degree[147] -> (X): [ -0.838672   , -0.838671   ] , [ 0.544641    , 0.544639   ]
Degree[148] -> (X): [ -0.848047   , -0.848048   ] , [ 0.529922    , 0.529919   ]
Degree[149] -> (X): [ -0.857172   , -0.857167   ] , [ 0.515031    , 0.515038   ]
Degree[150] -> (X): [ -0.866031   , -0.866025   ] , [ 0.5         , 0.5        ]
Degree[151] -> (X): [ -0.874625   , -0.87462    ] , [ 0.484812    , 0.48481    ]
Degree[152] -> (X): [ -0.882953   , -0.882948   ] , [ 0.469469    , 0.469472   ]
Degree[153] -> (X): [ -0.891      , -0.891007   ] , [ 0.453984    , 0.45399    ]
Degree[154] -> (X): [ -0.898797   , -0.898794   ] , [ 0.438375    , 0.438371   ]
Degree[155] -> (X): [ -0.906313   , -0.906308   ] , [ 0.422625    , 0.422618   ]
Degree[156] -> (X): [ -0.913547   , -0.913545   ] , [ 0.406734    , 0.406737   ]
Degree[157] -> (X): [ -0.9205     , -0.920505   ] , [ 0.390734    , 0.390731   ]
Degree[158] -> (X): [ -0.927188   , -0.927184   ] , [ 0.374609    , 0.374607   ]
Degree[159] -> (X): [ -0.933578   , -0.93358    ] , [ 0.358375    , 0.358368   ]
Degree[160] -> (X): [ -0.939687   , -0.939693   ] , [ 0.342016    , 0.34202    ]
Degree[161] -> (X): [ -0.945516   , -0.945519   ] , [ 0.325563    , 0.325568   ]
Degree[162] -> (X): [ -0.951063   , -0.951057   ] , [ 0.309016    , 0.309017   ]
Degree[163] -> (X): [ -0.956312   , -0.956305   ] , [ 0.292375    , 0.292372   ]
Degree[164] -> (X): [ -0.961266   , -0.961262   ] , [ 0.275641    , 0.275637   ]
Degree[165] -> (X): [ -0.965922   , -0.965926   ] , [ 0.258812    , 0.258819   ]
Degree[166] -> (X): [ -0.970297   , -0.970296   ] , [ 0.241922    , 0.241922   ]
Degree[167] -> (X): [ -0.974375   , -0.97437    ] , [ 0.224953    , 0.224951   ]
Degree[168] -> (X): [ -0.978141   , -0.978148   ] , [ 0.207906    , 0.207912   ]
Degree[169] -> (X): [ -0.981625   , -0.981627   ] , [ 0.190812    , 0.190809   ]
Degree[170] -> (X): [ -0.984812   , -0.984808   ] , [ 0.173641    , 0.173648   ]
Degree[171] -> (X): [ -0.987688   , -0.987688   ] , [ 0.156438    , 0.156434   ]
Degree[172] -> (X): [ -0.990266   , -0.990268   ] , [ 0.139172    , 0.139173   ]
Degree[173] -> (X): [ -0.992547   , -0.992546   ] , [ 0.121875    , 0.121869   ]
Degree[174] -> (X): [ -0.994516   , -0.994522   ] , [ 0.104531    , 0.104528   ]
Degree[175] -> (X): [ -0.996188   , -0.996195   ] , [ 0.0871563   , 0.0871557  ]
Degree[176] -> (X): [ -0.997563   , -0.997564   ] , [ 0.06975     , 0.0697565  ]
Degree[177] -> (X): [ -0.998625   , -0.99863    ] , [ 0.0523437   , 0.052336   ]
Degree[178] -> (X): [ -0.999391   , -0.999391   ] , [ 0.0349062   , 0.0348995  ]
Degree[179] -> (X): [ -0.999844   , -0.999848   ] , [ 0.0174531   , 0.0174524  ]
Degree[180] -> (X): [ -1          , -1          ] , [ -0          , 1.22465e-016
Degree[181] -> (X): [ -0.999844   , -0.999848   ] , [ -0.0174531  , -0.0174524 ]
Degree[182] -> (X): [ -0.999391   , -0.999391   ] , [ -0.0349062  , -0.0348995 ]
Degree[183] -> (X): [ -0.998625   , -0.99863    ] , [ -0.0523437  , -0.052336  ]
Degree[184] -> (X): [ -0.997563   , -0.997564   ] , [ -0.06975    , -0.0697565 ]
Degree[185] -> (X): [ -0.996188   , -0.996195   ] , [ -0.0871563  , -0.0871557 ]
Degree[186] -> (X): [ -0.994516   , -0.994522   ] , [ -0.104531   , -0.104528  ]
Degree[187] -> (X): [ -0.992547   , -0.992546   ] , [ -0.121875   , -0.121869  ]
Degree[188] -> (X): [ -0.990266   , -0.990268   ] , [ -0.139172   , -0.139173  ]
Degree[189] -> (X): [ -0.987688   , -0.987688   ] , [ -0.156438   , -0.156434  ]
Degree[190] -> (X): [ -0.984812   , -0.984808   ] , [ -0.173641   , -0.173648  ]
Degree[191] -> (X): [ -0.981625   , -0.981627   ] , [ -0.190812   , -0.190809  ]
Degree[192] -> (X): [ -0.978141   , -0.978148   ] , [ -0.207906   , -0.207912  ]
Degree[193] -> (X): [ -0.974375   , -0.97437    ] , [ -0.224953   , -0.224951  ]
Degree[194] -> (X): [ -0.970297   , -0.970296   ] , [ -0.241922   , -0.241922  ]
Degree[195] -> (X): [ -0.965922   , -0.965926   ] , [ -0.258812   , -0.258819  ]
Degree[196] -> (X): [ -0.961266   , -0.961262   ] , [ -0.275641   , -0.275637  ]
Degree[197] -> (X): [ -0.956312   , -0.956305   ] , [ -0.292375   , -0.292372  ]
Degree[198] -> (X): [ -0.951063   , -0.951057   ] , [ -0.309016   , -0.309017  ]
Degree[199] -> (X): [ -0.945516   , -0.945519   ] , [ -0.325563   , -0.325568  ]
Degree[200] -> (X): [ -0.939687   , -0.939693   ] , [ -0.342016   , -0.34202   ]
Degree[201] -> (X): [ -0.933578   , -0.93358    ] , [ -0.358375   , -0.358368  ]
Degree[202] -> (X): [ -0.927188   , -0.927184   ] , [ -0.374609   , -0.374607  ]
Degree[203] -> (X): [ -0.9205     , -0.920505   ] , [ -0.390734   , -0.390731  ]
Degree[204] -> (X): [ -0.913547   , -0.913545   ] , [ -0.406734   , -0.406737  ]
Degree[205] -> (X): [ -0.906313   , -0.906308   ] , [ -0.422625   , -0.422618  ]
Degree[206] -> (X): [ -0.898797   , -0.898794   ] , [ -0.438375   , -0.438371  ]
Degree[207] -> (X): [ -0.891      , -0.891007   ] , [ -0.453984   , -0.45399   ]
Degree[208] -> (X): [ -0.882953   , -0.882948   ] , [ -0.469469   , -0.469472  ]
Degree[209] -> (X): [ -0.874625   , -0.87462    ] , [ -0.484812   , -0.48481   ]
Degree[210] -> (X): [ -0.866031   , -0.866025   ] , [ -0.5        , -0.5       ]
Degree[211] -> (X): [ -0.857172   , -0.857167   ] , [ -0.515031   , -0.515038  ]
Degree[212] -> (X): [ -0.848047   , -0.848048   ] , [ -0.529922   , -0.529919  ]
Degree[213] -> (X): [ -0.838672   , -0.838671   ] , [ -0.544641   , -0.544639  ]
Degree[214] -> (X): [ -0.829031   , -0.829038   ] , [ -0.559187   , -0.559193  ]
Degree[215] -> (X): [ -0.819156   , -0.819152   ] , [ -0.573578   , -0.573576  ]
Degree[216] -> (X): [ -0.809016   , -0.809017   ] , [ -0.587781   , -0.587785  ]
Degree[217] -> (X): [ -0.798641   , -0.798635   ] , [ -0.601812   , -0.601815  ]
Degree[218] -> (X): [ -0.788016   , -0.788011   ] , [ -0.615656   , -0.615662  ]
Degree[219] -> (X): [ -0.777141   , -0.777146   ] , [ -0.629328   , -0.62932   ]
Degree[220] -> (X): [ -0.766047   , -0.766044   ] , [ -0.642781   , -0.642788  ]
Degree[221] -> (X): [ -0.754703   , -0.75471    ] , [ -0.656062   , -0.656059  ]
Degree[222] -> (X): [ -0.743141   , -0.743145   ] , [ -0.669125   , -0.669131  ]
Degree[223] -> (X): [ -0.731359   , -0.731354   ] , [ -0.682      , -0.681998  ]
Degree[224] -> (X): [ -0.719344   , -0.71934    ] , [ -0.694656   , -0.694658  ]
Degree[225] -> (X): [ -0.707109   , -0.707107   ] , [ -0.707109   , -0.707107  ]
Degree[226] -> (X): [ -0.694656   , -0.694658   ] , [ -0.719344   , -0.71934   ]
Degree[227] -> (X): [ -0.682      , -0.681998   ] , [ -0.731359   , -0.731354  ]
Degree[228] -> (X): [ -0.669125   , -0.669131   ] , [ -0.743141   , -0.743145  ]
Degree[229] -> (X): [ -0.656062   , -0.656059   ] , [ -0.754703   , -0.75471   ]
Degree[230] -> (X): [ -0.642781   , -0.642788   ] , [ -0.766047   , -0.766044  ]
Degree[231] -> (X): [ -0.629328   , -0.62932    ] , [ -0.777141   , -0.777146  ]
Degree[232] -> (X): [ -0.615656   , -0.615662   ] , [ -0.788016   , -0.788011  ]
Degree[233] -> (X): [ -0.601812   , -0.601815   ] , [ -0.798641   , -0.798635  ]
Degree[234] -> (X): [ -0.587781   , -0.587785   ] , [ -0.809016   , -0.809017  ]
Degree[235] -> (X): [ -0.573578   , -0.573576   ] , [ -0.819156   , -0.819152  ]
Degree[236] -> (X): [ -0.559187   , -0.559193   ] , [ -0.829031   , -0.829038  ]
Degree[237] -> (X): [ -0.544641   , -0.544639   ] , [ -0.838672   , -0.838671  ]
Degree[238] -> (X): [ -0.529922   , -0.529919   ] , [ -0.848047   , -0.848048  ]
Degree[239] -> (X): [ -0.515031   , -0.515038   ] , [ -0.857172   , -0.857167  ]
Degree[240] -> (X): [ -0.5        , -0.5        ] , [ -0.866031   , -0.866025  ]
Degree[241] -> (X): [ -0.484812   , -0.48481    ] , [ -0.874625   , -0.87462   ]
Degree[242] -> (X): [ -0.469469   , -0.469472   ] , [ -0.882953   , -0.882948  ]
Degree[243] -> (X): [ -0.453984   , -0.45399    ] , [ -0.891      , -0.891007  ]
Degree[244] -> (X): [ -0.438375   , -0.438371   ] , [ -0.898797   , -0.898794  ]
Degree[245] -> (X): [ -0.422625   , -0.422618   ] , [ -0.906313   , -0.906308  ]
Degree[246] -> (X): [ -0.406734   , -0.406737   ] , [ -0.913547   , -0.913545  ]
Degree[247] -> (X): [ -0.390734   , -0.390731   ] , [ -0.9205     , -0.920505  ]
Degree[248] -> (X): [ -0.374609   , -0.374607   ] , [ -0.927188   , -0.927184  ]
Degree[249] -> (X): [ -0.358375   , -0.358368   ] , [ -0.933578   , -0.93358   ]
Degree[250] -> (X): [ -0.342016   , -0.34202    ] , [ -0.939687   , -0.939693  ]
Degree[251] -> (X): [ -0.325563   , -0.325568   ] , [ -0.945516   , -0.945519  ]
Degree[252] -> (X): [ -0.309016   , -0.309017   ] , [ -0.951063   , -0.951057  ]
Degree[253] -> (X): [ -0.292375   , -0.292372   ] , [ -0.956312   , -0.956305  ]
Degree[254] -> (X): [ -0.275641   , -0.275637   ] , [ -0.961266   , -0.961262  ]
Degree[255] -> (X): [ -0.258812   , -0.258819   ] , [ -0.965922   , -0.965926  ]
Degree[256] -> (X): [ -0.241922   , -0.241922   ] , [ -0.970297   , -0.970296  ]
Degree[257] -> (X): [ -0.224953   , -0.224951   ] , [ -0.974375   , -0.97437   ]
Degree[258] -> (X): [ -0.207906   , -0.207912   ] , [ -0.978141   , -0.978148  ]
Degree[259] -> (X): [ -0.190812   , -0.190809   ] , [ -0.981625   , -0.981627  ]
Degree[260] -> (X): [ -0.173641   , -0.173648   ] , [ -0.984812   , -0.984808  ]
Degree[261] -> (X): [ -0.156438   , -0.156434   ] , [ -0.987688   , -0.987688  ]
Degree[262] -> (X): [ -0.139172   , -0.139173   ] , [ -0.990266   , -0.990268  ]
Degree[263] -> (X): [ -0.121875   , -0.121869   ] , [ -0.992547   , -0.992546  ]
Degree[264] -> (X): [ -0.104531   , -0.104528   ] , [ -0.994516   , -0.994522  ]
Degree[265] -> (X): [ -0.0871563  , -0.0871557  ] , [ -0.996188   , -0.996195  ]
Degree[266] -> (X): [ -0.06975    , -0.0697565  ] , [ -0.997563   , -0.997564  ]
Degree[267] -> (X): [ -0.0523437  , -0.052336   ] , [ -0.998625   , -0.99863   ]
Degree[268] -> (X): [ -0.0349062  , -0.0348995  ] , [ -0.999391   , -0.999391  ]
Degree[269] -> (X): [ -0.0174531  , -0.0174524  ] , [ -0.999844   , -0.999848  ]
Degree[270] -> (X): [ 0           , -1.83697e-016 ] , [ -1          , -1
Degree[271] -> (X): [ 0.0174531   , 0.0174524   ] , [ -0.999844   , -0.999848  ]
Degree[272] -> (X): [ 0.0349062   , 0.0348995   ] , [ -0.999391   , -0.999391  ]
Degree[273] -> (X): [ 0.0523437   , 0.052336    ] , [ -0.998625   , -0.99863   ]
Degree[274] -> (X): [ 0.06975     , 0.0697565   ] , [ -0.997563   , -0.997564  ]
Degree[275] -> (X): [ 0.0871563   , 0.0871557   ] , [ -0.996188   , -0.996195  ]
Degree[276] -> (X): [ 0.104531    , 0.104528    ] , [ -0.994516   , -0.994522  ]
Degree[277] -> (X): [ 0.121875    , 0.121869    ] , [ -0.992547   , -0.992546  ]
Degree[278] -> (X): [ 0.139172    , 0.139173    ] , [ -0.990266   , -0.990268  ]
Degree[279] -> (X): [ 0.156438    , 0.156434    ] , [ -0.987688   , -0.987688  ]
Degree[280] -> (X): [ 0.173641    , 0.173648    ] , [ -0.984812   , -0.984808  ]
Degree[281] -> (X): [ 0.190812    , 0.190809    ] , [ -0.981625   , -0.981627  ]
Degree[282] -> (X): [ 0.207906    , 0.207912    ] , [ -0.978141   , -0.978148  ]
Degree[283] -> (X): [ 0.224953    , 0.224951    ] , [ -0.974375   , -0.97437   ]
Degree[284] -> (X): [ 0.241922    , 0.241922    ] , [ -0.970297   , -0.970296  ]
Degree[285] -> (X): [ 0.258812    , 0.258819    ] , [ -0.965922   , -0.965926  ]
Degree[286] -> (X): [ 0.275641    , 0.275637    ] , [ -0.961266   , -0.961262  ]
Degree[287] -> (X): [ 0.292375    , 0.292372    ] , [ -0.956312   , -0.956305  ]
Degree[288] -> (X): [ 0.309016    , 0.309017    ] , [ -0.951063   , -0.951057  ]
Degree[289] -> (X): [ 0.325563    , 0.325568    ] , [ -0.945516   , -0.945519  ]
Degree[290] -> (X): [ 0.342016    , 0.34202     ] , [ -0.939687   , -0.939693  ]
Degree[291] -> (X): [ 0.358375    , 0.358368    ] , [ -0.933578   , -0.93358   ]
Degree[292] -> (X): [ 0.374609    , 0.374607    ] , [ -0.927188   , -0.927184  ]
Degree[293] -> (X): [ 0.390734    , 0.390731    ] , [ -0.9205     , -0.920505  ]
Degree[294] -> (X): [ 0.406734    , 0.406737    ] , [ -0.913547   , -0.913545  ]
Degree[295] -> (X): [ 0.422625    , 0.422618    ] , [ -0.906313   , -0.906308  ]
Degree[296] -> (X): [ 0.438375    , 0.438371    ] , [ -0.898797   , -0.898794  ]
Degree[297] -> (X): [ 0.453984    , 0.45399     ] , [ -0.891      , -0.891007  ]
Degree[298] -> (X): [ 0.469469    , 0.469472    ] , [ -0.882953   , -0.882948  ]
Degree[299] -> (X): [ 0.484812    , 0.48481     ] , [ -0.874625   , -0.87462   ]
Degree[300] -> (X): [ 0.5         , 0.5         ] , [ -0.866031   , -0.866025  ]
Degree[301] -> (X): [ 0.515031    , 0.515038    ] , [ -0.857172   , -0.857167  ]
Degree[302] -> (X): [ 0.529922    , 0.529919    ] , [ -0.848047   , -0.848048  ]
Degree[303] -> (X): [ 0.544641    , 0.544639    ] , [ -0.838672   , -0.838671  ]
Degree[304] -> (X): [ 0.559187    , 0.559193    ] , [ -0.829031   , -0.829038  ]
Degree[305] -> (X): [ 0.573578    , 0.573576    ] , [ -0.819156   , -0.819152  ]
Degree[306] -> (X): [ 0.587781    , 0.587785    ] , [ -0.809016   , -0.809017  ]
Degree[307] -> (X): [ 0.601812    , 0.601815    ] , [ -0.798641   , -0.798635  ]
Degree[308] -> (X): [ 0.615656    , 0.615662    ] , [ -0.788016   , -0.788011  ]
Degree[309] -> (X): [ 0.629328    , 0.62932     ] , [ -0.777141   , -0.777146  ]
Degree[310] -> (X): [ 0.642781    , 0.642788    ] , [ -0.766047   , -0.766044  ]
Degree[311] -> (X): [ 0.656062    , 0.656059    ] , [ -0.754703   , -0.75471   ]
Degree[312] -> (X): [ 0.669125    , 0.669131    ] , [ -0.743141   , -0.743145  ]
Degree[313] -> (X): [ 0.682       , 0.681998    ] , [ -0.731359   , -0.731354  ]
Degree[314] -> (X): [ 0.694656    , 0.694658    ] , [ -0.719344   , -0.71934   ]
Degree[315] -> (X): [ 0.707109    , 0.707107    ] , [ -0.707109   , -0.707107  ]
Degree[316] -> (X): [ 0.719344    , 0.71934     ] , [ -0.694656   , -0.694658  ]
Degree[317] -> (X): [ 0.731359    , 0.731354    ] , [ -0.682      , -0.681998  ]
Degree[318] -> (X): [ 0.743141    , 0.743145    ] , [ -0.669125   , -0.669131  ]
Degree[319] -> (X): [ 0.754703    , 0.75471     ] , [ -0.656062   , -0.656059  ]
Degree[320] -> (X): [ 0.766047    , 0.766044    ] , [ -0.642781   , -0.642788  ]
Degree[321] -> (X): [ 0.777141    , 0.777146    ] , [ -0.629328   , -0.62932   ]
Degree[322] -> (X): [ 0.788016    , 0.788011    ] , [ -0.615656   , -0.615662  ]
Degree[323] -> (X): [ 0.798641    , 0.798635    ] , [ -0.601812   , -0.601815  ]
Degree[324] -> (X): [ 0.809016    , 0.809017    ] , [ -0.587781   , -0.587785  ]
Degree[325] -> (X): [ 0.819156    , 0.819152    ] , [ -0.573578   , -0.573576  ]
Degree[326] -> (X): [ 0.829031    , 0.829038    ] , [ -0.559187   , -0.559193  ]
Degree[327] -> (X): [ 0.838672    , 0.838671    ] , [ -0.544641   , -0.544639  ]
Degree[328] -> (X): [ 0.848047    , 0.848048    ] , [ -0.529922   , -0.529919  ]
Degree[329] -> (X): [ 0.857172    , 0.857167    ] , [ -0.515031   , -0.515038  ]
Degree[330] -> (X): [ 0.866031    , 0.866025    ] , [ -0.5        , -0.5       ]
Degree[331] -> (X): [ 0.874625    , 0.87462     ] , [ -0.484812   , -0.48481   ]
Degree[332] -> (X): [ 0.882953    , 0.882948    ] , [ -0.469469   , -0.469472  ]
Degree[333] -> (X): [ 0.891       , 0.891007    ] , [ -0.453984   , -0.45399   ]
Degree[334] -> (X): [ 0.898797    , 0.898794    ] , [ -0.438375   , -0.438371  ]
Degree[335] -> (X): [ 0.906313    , 0.906308    ] , [ -0.422625   , -0.422618  ]
Degree[336] -> (X): [ 0.913547    , 0.913545    ] , [ -0.406734   , -0.406737  ]
Degree[337] -> (X): [ 0.9205      , 0.920505    ] , [ -0.390734   , -0.390731  ]
Degree[338] -> (X): [ 0.927188    , 0.927184    ] , [ -0.374609   , -0.374607  ]
Degree[339] -> (X): [ 0.933578    , 0.93358     ] , [ -0.358375   , -0.358368  ]
Degree[340] -> (X): [ 0.939687    , 0.939693    ] , [ -0.342016   , -0.34202   ]
Degree[341] -> (X): [ 0.945516    , 0.945519    ] , [ -0.325563   , -0.325568  ]
Degree[342] -> (X): [ 0.951063    , 0.951057    ] , [ -0.309016   , -0.309017  ]
Degree[343] -> (X): [ 0.956312    , 0.956305    ] , [ -0.292375   , -0.292372  ]
Degree[344] -> (X): [ 0.961266    , 0.961262    ] , [ -0.275641   , -0.275637  ]
Degree[345] -> (X): [ 0.965922    , 0.965926    ] , [ -0.258812   , -0.258819  ]
Degree[346] -> (X): [ 0.970297    , 0.970296    ] , [ -0.241922   , -0.241922  ]
Degree[347] -> (X): [ 0.974375    , 0.97437     ] , [ -0.224953   , -0.224951  ]
Degree[348] -> (X): [ 0.978141    , 0.978148    ] , [ -0.207906   , -0.207912  ]
Degree[349] -> (X): [ 0.981625    , 0.981627    ] , [ -0.190812   , -0.190809  ]
Degree[350] -> (X): [ 0.984812    , 0.984808    ] , [ -0.173641   , -0.173648  ]
Degree[351] -> (X): [ 0.987688    , 0.987688    ] , [ -0.156438   , -0.156434  ]
Degree[352] -> (X): [ 0.990266    , 0.990268    ] , [ -0.139172   , -0.139173  ]
Degree[353] -> (X): [ 0.992547    , 0.992546    ] , [ -0.121875   , -0.121869  ]
Degree[354] -> (X): [ 0.994516    , 0.994522    ] , [ -0.104531   , -0.104528  ]
Degree[355] -> (X): [ 0.996188    , 0.996195    ] , [ -0.0871563  , -0.0871557 ]
Degree[356] -> (X): [ 0.997563    , 0.997564    ] , [ -0.06975    , -0.0697565 ]
Degree[357] -> (X): [ 0.998625    , 0.99863     ] , [ -0.0523437  , -0.052336  ]
Degree[358] -> (X): [ 0.999391    , 0.999391    ] , [ -0.0349062  , -0.0348995 ]
Degree[359] -> (X): [ 0.999844    , 0.999848    ] , [ -0.0174531  , -0.0174524 ]

es esta la tabla que necesito?


ivancea96

Si la tabla no te da la precisión que necesitas, puedes calcularlo mediante la serie de taylor:
Serie de Taylor, Wikipedia