Bueno, me puse a buscar por google algo para entretenerme y encontre esto:
http://platea.pntic.mec.es/jescuder/logica.htm
Pongo aqui los 100 primeros. Soluciones !!!
1. SILENCIO. Si Ángela habla más bajo que Rosa y Celia habla más alto que Rosa, ¿habla Ángela más alto o más bajo que Celia?
2. LA NOTA MEDIA. La nota media conseguida en una clase de 20 alumnos ha sido de 6. Ocho alumnos han suspendido con un 3 y el resto superó el 5. ¿Cuál es la nota media de los alumnos aprobados?
3. LOS CUATRO ATLETAS. De cuatro corredores de atletismo se sabe que C ha llegado inmediatamente detrás de B, y D ha llegado en medio de A y C. ¿Podría Vd. calcular el orden de llegada?
4. SEIS AMIGOS DE VACACIONES. Seis amigos desean pasar sus vacaciones juntos y deciden, cada dos, utilizar diferentes medios de transporte; sabemos que Alejandro no utiliza el coche ya que éste acompaña a Benito que no va en avión. Andrés viaja en avión. Si Carlos no va acompañado de Darío ni hace uso del avión, podría Vd. decirnos en qué medio de transporte llega a su destino Tomás.
5. LOS CUATRO PERROS. Tenemos cuatro perros: un galgo, un dogo, un alano y un podenco. Éste último come más que el galgo; el alano come más que el galgo y menos que el dogo, pero éste come más que el podenco. ¿Cuál de los cuatro será más barato de mantener?
6. TENIS DE CATEGORÍA. En un partido del prestigioso torneo de tenis de Roland Garros se enfrentaron Agasy y Becker. El triunfo correspondió al primero por 6-3 y 7-5. Comenzó sacando Agasy y no perdió nunca su saque. Becker perdió su servicio dos veces. Agasy rompió el servicio de su rival en el segundo juego del primer set y, ¿en qué juego del segundo set?
7. SERPIENTES MARINAS. Un capitán en el Caribe fue rodeado por un grupo de serpientes marinas, muchas de las cuales eran ciegas. Tres no veían con los ojos a estribor, 3 no veían nada a babor, 3 podían ver a estribor, 3 a babor, 3 podían ver tanto a estribor como a babor, en tanto que otras 3 tenían ambos ojos arruinados. ¿Cuál es el mínimo número de serpientes necesarias para que con ellas se den todas esas circunstancias?
8. EL PARO AUMENTA. Con motivo de realizar un estudio estadístico de los componentes de una población, un agente analizó determinadas muestra de familias. El resultado fue el siguiente:
1) Había más padres que hijos.
2) Cada chico tenía una hermana.
3) Había más chicos que chicas.
4) No había padres sin hijos.
¿Qué cree Vd. que le ocurrió al agente?
9. PARTIDO DE TENIS. Santana ganó a Orantes un set de tenis por 6-3. Cinco juegos los ganó el jugador que no servía. ¿Quién sirvió primero?
10. CABALLOS. El caballo de Mac es más oscuro que el de Smith, pero más rápido y más viejo que el de Jack, que es aún más lento que el de Willy, que es más joven que el de Mac, que es más viejo que el de Smith, que es más claro que el de Willy, aunque el de Jack es más lento y más oscuro que el de Smith. ¿Cuál es el más viejo, cuál el más lento y cuál el más claro?
En ocasiones, ciertas personas se encuentran en una situación crítica, y sólo por su agudeza e inteligencia pueden salir de ella.
11. EL EXPLORADOR CONDENADO. Un explorador cayó en manos de una tribu de indígenas, se le propuso la elección entre morir en la hoguera o envenenado. Para ello, el condenado debía pronunciar una frase tal que, si era cierta, moriría envenenado, y si era falsa, moriría en la hoguera. ¿Cómo escapó el condenado a su funesta suerte?
12. EL PRISIONERO Y LOS DOS GUARDIANES. Un sultán encierra a un prisionero en una celda con dos guardianes, uno que dice siempre la verdad y otro que siempre miente. La celda tiene dos puertas: la de la libertad y la de la esclavitud. La puerta que elija el prisionero para salir de la celda decidirá su suerte.
El prisionero tiene derecho de hacer una pregunta y sólo una a uno de los guardianes. Por supuesto, el prisionero no sabe cuál es el que dice la verdad y cuál es el que miente.
¿Puede el prisionero obtener la libertad de forma segura?
13. EL PRISIONERO Y LOS TRES GUARDIANES. Imaginemos que hay tres puertas y tres guardias, dos en las condiciones anteriores y el tercero que dice verdad o mentira alternativamente. ¿Cuál es el menor número de preguntas que debe hacer para encontrar la libertad con toda seguridad?
14. LOS 3 PRESOS Y LAS BOINAS (1). El director de una prisión llama a tres de sus presos, les enseña tres boinas blancas y dos boinas negras, y les dice: «Voy a colocar a cada uno de ustedes una boina en la cabeza, el primero de ustedes que me indique el color de la suya será puesto en libertad».
Si los presos están en fila, de manera que el primero no puede ver las boinas de los otros dos, el segundo ve la boina del primero y el tercero ve las boinas de los otros dos. ¿Por qué razonamiento uno de los presos obtiene la libertad?
15. LOS 3 PRESOS Y LAS BOINAS (2). El director de una prisión llama a tres de sus presos, les enseña tres boinas blancas y dos boinas negras, y les dice: «Voy a colocar a cada uno de ustedes una boina en la cabeza, el primero de ustedes que me indique el color de la suya será puesto en libertad».
Si los presos pueden moverse, y por tanto ver las boinas de los otros dos. ¿Por qué razonamiento uno de los presos obtiene la libertad?
16. LOS MARIDOS ENGAÑADOS. Cuarenta cortesanos de la corte de un sultán eran engañados por sus mujeres, cosa que era claramente conocida por todos los demás personajes de la corte sin excepción. Únicamente cada marido ignoraba su propia situación.
El sultán: «Por lo menos uno de vosotros tiene una mujer infiel. Quiero que el que sea la expulse una mañana de la ciudad, cuando esté seguro de la infidelidad».
Al cabo de 40 días, por la mañana, los cuarenta cortesanos engañados expulsaron a sus mujeres de la ciudad. ¿Por qué?
17.
18. EL CONDENADO A MUERTE. En los tiempos de la antigüedad la gracia o el castigo se dejaban frecuentemente al azar. Así, éste es el caso de un reo al que un sultán decidió que se salvase o muriese sacando al azar una papeleta de entre dos posibles: una con la sentencia "muerte", la otra con la palabra "vida", indicando gracia. Lo malo es que el Gran Visir, que deseaba que el acusado muriese, hizo que en las dos papeletas se escribiese la palabra "muerte". ¿Cómo se las arregló el reo, enterado de la trama del Gran Visir, para estar seguro de salvarse? Al reo no le estaba permitido hablar y descubrir así el enredo del Visir.
19. LAS DEPORTISTAS. Ana, Beatriz y Carmen. Una es tenista, otra gimnasta y otra nadadora. La gimnasta, la más baja de las tres, es soltera. Ana, que es suegra de Beatriz, es más alta que la tenista. ¿Qué deporte practica cada una?
20. SILOGISMOS. Ejemplo que está en todos los manuales de lógica elemental. El silogismo:
«Los hombres son mortales,
Sócrates es hombre.
Luego, Sócrates es mortal».
es indudablemente conocido e inevitablemente válido. Qué ocurre con el siguiente:
«Los chinos son numerosos,
Confucio es chino.
Luego, Confucio es numeroso».
21. EL TORNEO DE AJEDREZ. En un torneo de ajedrez participaron 30 concursantes que fueron divididos, de acuerdo con su categoría, en dos grupos. En cada grupo los participantes jugaron una partida contra todos los demás. En total se jugaron 87 partidas más en el segundo grupo que en el primero. El ganador del primer grupo no perdió ninguna partida y totalizó 7'5 puntos. ¿En cuántas partidas hizo tablas el ganador?
22. LAS TRES CARTAS. Tres naipes, sacados de una baraja francesa, yacen boca arriba en una fila horizontal. A la derecha de un Rey hay una o dos Damas. A la izquierda de una Dama hay una o dos Damas. A la izquierda de un corazón hay una o dos picas. A la derecha de una pica hay una o dos picas. Dígase de qué tres cartas se trata.
23. TRES PAREJAS EN LA DISCOTECA. Tres parejas de jóvenes fueron a una discoteca. Una de las chicas vestía de rojo, otra de verde, y la tercera, de azul. Sus acompañantes vestían también de estos mismos colores. Ya estaban las parejas en la pista cuando el chico de rojo, pasando al bailar junto a la chica de verde, le habló así:
Carlos: ¿Te has dado cuenta Ana? Ninguno de nosotros tiene pareja vestida de su mismo color.
Con esta información, ¿se podrá deducir de qué color viste el compañero de baile de la chica de rojo?
24. BLANCO, RUBIO Y CASTAÑO. Tres personas, de apellidos Blanco, Rubio y Castaño, se conocen en una reunión. Poco después de hacerse las presentaciones, la dama hace notar:
"Es muy curioso que nuestros apellidos sean Blanco Rubio y Castaño, y que nos hayamos reunido aquí tres personas con ese color de cabello"
"Sí que lo es -dijo la persona que tenía el pelo rubio-, pero habrás observado que nadie tiene el color de pelo que corresponde a su apellido." "¡Es verdad!" -exclamó quien se apellidaba Blanco.
Si la dama no tiene el pelo castaño, ¿de qué color es el cabello de Rubio?
25. LOS CIEN POLÍTICOS. Cierta convención reunía a cien políticos. Cada político era o bien deshonesto o bien honesto. Se dan los datos:
a) Al menos uno de los políticos era honesto.
b) Dado cualquier par de políticos, al menos uno de los dos era deshonesto. ¿Puede determinarse partiendo de estos dos datos cuántos políticos eran honestos y cuántos deshonestos?
http://platea.pntic.mec.es/jescuder/logica.htm
Pongo aqui los 100 primeros. Soluciones !!!
1. SILENCIO. Si Ángela habla más bajo que Rosa y Celia habla más alto que Rosa, ¿habla Ángela más alto o más bajo que Celia?
2. LA NOTA MEDIA. La nota media conseguida en una clase de 20 alumnos ha sido de 6. Ocho alumnos han suspendido con un 3 y el resto superó el 5. ¿Cuál es la nota media de los alumnos aprobados?
3. LOS CUATRO ATLETAS. De cuatro corredores de atletismo se sabe que C ha llegado inmediatamente detrás de B, y D ha llegado en medio de A y C. ¿Podría Vd. calcular el orden de llegada?
4. SEIS AMIGOS DE VACACIONES. Seis amigos desean pasar sus vacaciones juntos y deciden, cada dos, utilizar diferentes medios de transporte; sabemos que Alejandro no utiliza el coche ya que éste acompaña a Benito que no va en avión. Andrés viaja en avión. Si Carlos no va acompañado de Darío ni hace uso del avión, podría Vd. decirnos en qué medio de transporte llega a su destino Tomás.
5. LOS CUATRO PERROS. Tenemos cuatro perros: un galgo, un dogo, un alano y un podenco. Éste último come más que el galgo; el alano come más que el galgo y menos que el dogo, pero éste come más que el podenco. ¿Cuál de los cuatro será más barato de mantener?
6. TENIS DE CATEGORÍA. En un partido del prestigioso torneo de tenis de Roland Garros se enfrentaron Agasy y Becker. El triunfo correspondió al primero por 6-3 y 7-5. Comenzó sacando Agasy y no perdió nunca su saque. Becker perdió su servicio dos veces. Agasy rompió el servicio de su rival en el segundo juego del primer set y, ¿en qué juego del segundo set?
7. SERPIENTES MARINAS. Un capitán en el Caribe fue rodeado por un grupo de serpientes marinas, muchas de las cuales eran ciegas. Tres no veían con los ojos a estribor, 3 no veían nada a babor, 3 podían ver a estribor, 3 a babor, 3 podían ver tanto a estribor como a babor, en tanto que otras 3 tenían ambos ojos arruinados. ¿Cuál es el mínimo número de serpientes necesarias para que con ellas se den todas esas circunstancias?
8. EL PARO AUMENTA. Con motivo de realizar un estudio estadístico de los componentes de una población, un agente analizó determinadas muestra de familias. El resultado fue el siguiente:
1) Había más padres que hijos.
2) Cada chico tenía una hermana.
3) Había más chicos que chicas.
4) No había padres sin hijos.
¿Qué cree Vd. que le ocurrió al agente?
9. PARTIDO DE TENIS. Santana ganó a Orantes un set de tenis por 6-3. Cinco juegos los ganó el jugador que no servía. ¿Quién sirvió primero?
10. CABALLOS. El caballo de Mac es más oscuro que el de Smith, pero más rápido y más viejo que el de Jack, que es aún más lento que el de Willy, que es más joven que el de Mac, que es más viejo que el de Smith, que es más claro que el de Willy, aunque el de Jack es más lento y más oscuro que el de Smith. ¿Cuál es el más viejo, cuál el más lento y cuál el más claro?
En ocasiones, ciertas personas se encuentran en una situación crítica, y sólo por su agudeza e inteligencia pueden salir de ella.
11. EL EXPLORADOR CONDENADO. Un explorador cayó en manos de una tribu de indígenas, se le propuso la elección entre morir en la hoguera o envenenado. Para ello, el condenado debía pronunciar una frase tal que, si era cierta, moriría envenenado, y si era falsa, moriría en la hoguera. ¿Cómo escapó el condenado a su funesta suerte?
12. EL PRISIONERO Y LOS DOS GUARDIANES. Un sultán encierra a un prisionero en una celda con dos guardianes, uno que dice siempre la verdad y otro que siempre miente. La celda tiene dos puertas: la de la libertad y la de la esclavitud. La puerta que elija el prisionero para salir de la celda decidirá su suerte.
El prisionero tiene derecho de hacer una pregunta y sólo una a uno de los guardianes. Por supuesto, el prisionero no sabe cuál es el que dice la verdad y cuál es el que miente.
¿Puede el prisionero obtener la libertad de forma segura?
13. EL PRISIONERO Y LOS TRES GUARDIANES. Imaginemos que hay tres puertas y tres guardias, dos en las condiciones anteriores y el tercero que dice verdad o mentira alternativamente. ¿Cuál es el menor número de preguntas que debe hacer para encontrar la libertad con toda seguridad?
14. LOS 3 PRESOS Y LAS BOINAS (1). El director de una prisión llama a tres de sus presos, les enseña tres boinas blancas y dos boinas negras, y les dice: «Voy a colocar a cada uno de ustedes una boina en la cabeza, el primero de ustedes que me indique el color de la suya será puesto en libertad».
Si los presos están en fila, de manera que el primero no puede ver las boinas de los otros dos, el segundo ve la boina del primero y el tercero ve las boinas de los otros dos. ¿Por qué razonamiento uno de los presos obtiene la libertad?
15. LOS 3 PRESOS Y LAS BOINAS (2). El director de una prisión llama a tres de sus presos, les enseña tres boinas blancas y dos boinas negras, y les dice: «Voy a colocar a cada uno de ustedes una boina en la cabeza, el primero de ustedes que me indique el color de la suya será puesto en libertad».
Si los presos pueden moverse, y por tanto ver las boinas de los otros dos. ¿Por qué razonamiento uno de los presos obtiene la libertad?
16. LOS MARIDOS ENGAÑADOS. Cuarenta cortesanos de la corte de un sultán eran engañados por sus mujeres, cosa que era claramente conocida por todos los demás personajes de la corte sin excepción. Únicamente cada marido ignoraba su propia situación.
El sultán: «Por lo menos uno de vosotros tiene una mujer infiel. Quiero que el que sea la expulse una mañana de la ciudad, cuando esté seguro de la infidelidad».
Al cabo de 40 días, por la mañana, los cuarenta cortesanos engañados expulsaron a sus mujeres de la ciudad. ¿Por qué?
17.
18. EL CONDENADO A MUERTE. En los tiempos de la antigüedad la gracia o el castigo se dejaban frecuentemente al azar. Así, éste es el caso de un reo al que un sultán decidió que se salvase o muriese sacando al azar una papeleta de entre dos posibles: una con la sentencia "muerte", la otra con la palabra "vida", indicando gracia. Lo malo es que el Gran Visir, que deseaba que el acusado muriese, hizo que en las dos papeletas se escribiese la palabra "muerte". ¿Cómo se las arregló el reo, enterado de la trama del Gran Visir, para estar seguro de salvarse? Al reo no le estaba permitido hablar y descubrir así el enredo del Visir.
19. LAS DEPORTISTAS. Ana, Beatriz y Carmen. Una es tenista, otra gimnasta y otra nadadora. La gimnasta, la más baja de las tres, es soltera. Ana, que es suegra de Beatriz, es más alta que la tenista. ¿Qué deporte practica cada una?
20. SILOGISMOS. Ejemplo que está en todos los manuales de lógica elemental. El silogismo:
«Los hombres son mortales,
Sócrates es hombre.
Luego, Sócrates es mortal».
es indudablemente conocido e inevitablemente válido. Qué ocurre con el siguiente:
«Los chinos son numerosos,
Confucio es chino.
Luego, Confucio es numeroso».
21. EL TORNEO DE AJEDREZ. En un torneo de ajedrez participaron 30 concursantes que fueron divididos, de acuerdo con su categoría, en dos grupos. En cada grupo los participantes jugaron una partida contra todos los demás. En total se jugaron 87 partidas más en el segundo grupo que en el primero. El ganador del primer grupo no perdió ninguna partida y totalizó 7'5 puntos. ¿En cuántas partidas hizo tablas el ganador?
22. LAS TRES CARTAS. Tres naipes, sacados de una baraja francesa, yacen boca arriba en una fila horizontal. A la derecha de un Rey hay una o dos Damas. A la izquierda de una Dama hay una o dos Damas. A la izquierda de un corazón hay una o dos picas. A la derecha de una pica hay una o dos picas. Dígase de qué tres cartas se trata.
23. TRES PAREJAS EN LA DISCOTECA. Tres parejas de jóvenes fueron a una discoteca. Una de las chicas vestía de rojo, otra de verde, y la tercera, de azul. Sus acompañantes vestían también de estos mismos colores. Ya estaban las parejas en la pista cuando el chico de rojo, pasando al bailar junto a la chica de verde, le habló así:
Carlos: ¿Te has dado cuenta Ana? Ninguno de nosotros tiene pareja vestida de su mismo color.
Con esta información, ¿se podrá deducir de qué color viste el compañero de baile de la chica de rojo?
24. BLANCO, RUBIO Y CASTAÑO. Tres personas, de apellidos Blanco, Rubio y Castaño, se conocen en una reunión. Poco después de hacerse las presentaciones, la dama hace notar:
"Es muy curioso que nuestros apellidos sean Blanco Rubio y Castaño, y que nos hayamos reunido aquí tres personas con ese color de cabello"
"Sí que lo es -dijo la persona que tenía el pelo rubio-, pero habrás observado que nadie tiene el color de pelo que corresponde a su apellido." "¡Es verdad!" -exclamó quien se apellidaba Blanco.
Si la dama no tiene el pelo castaño, ¿de qué color es el cabello de Rubio?
25. LOS CIEN POLÍTICOS. Cierta convención reunía a cien políticos. Cada político era o bien deshonesto o bien honesto. Se dan los datos:
a) Al menos uno de los políticos era honesto.
b) Dado cualquier par de políticos, al menos uno de los dos era deshonesto. ¿Puede determinarse partiendo de estos dos datos cuántos políticos eran honestos y cuántos deshonestos?